305-CD-043-001
EOSDIS Core System Project

Flight Operations Segment (FOS)
Resource Management Design
Specification for the ECS Project

October 1995

Hughes Information Technology Corporation
Upper Marlboro, MD

Flight Operations Segment (FOS)
Resource Management Design Specification
for the ECS Project

October 1995

Prepared Under Contract NA S5-60000

CDRL Item #046
APPROVED BY
Cal Moore /s 9/22/95
Ca Moore, FOS CCB Chairman Date

EOSDIS Core System Project

Hughes Information Technology Cor poration
Upper Marlboro, Maryland

This page intentionally left blank.

ii 305-CD-043-001

Preface

Thisdocument, one of nineteen, comprisesthe detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1

launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project in-

clude;

305-CD-040
305-CD-041
305-CD-042
305-CD-043
305-CD-044
305-CD-045
305-CD-046
305-CD-047
305-CD-048
305-CD-049
305-CD-050
305-CD-051
305-CD-052
305-CD-053
305-CD-054
305-CD-055
305-CD-056
305-CD-057
305-CD-058

FOS Design Specification (Segment Level Design)
Planning and Scheduling Design Specification
Command Management Design Specification
Resource Management Design Specification
Telemetry Design Specification

Command Design Specification

Real-Time Contact Management Design Specification
Analysis Design Specification

User Interface Design Specification

Data Management Design Specification

Planning and Scheduling Program Design Language (PDL)
Command Management PDL

Resource Management PDL

Telemetry PDL

Real-Time Contact Management PDL

Analysis PDL

User Interface PDL

Data Management PDL

Command PDL

Object models presented in this document have been exported directly from CASE tools
and in some cases contain too much detail to be easily readable within hard copy page
constraints. The reader is encouraged to view these drawings on line using the Portable
Document Format (PDF) electronic copy available viathe ECS Data Handling System
(EDHS) at URL http://edhsl.gsfc.nasa.gov.

iii 305-CD-043-001

Thisdocument isacontract deliverable with an approval code 2. Assuch, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class | and Class Il change control requirements described in the EOS Configu-
ration Management Plan, and changes to this document shall be made by document change notice
(DCN) or by complete revision.

Any guestions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, MD 20774

Y% 305-CD-043-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed de-
sign. Thefirst document, the FOS Segment Level Design, provides an overview of the FOS seg-
ment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also allocates the level 4 FOS requirements to the subsystem de-
sign.

Keywords: FOS, design, specification, anaysis, IST, EOC

% 305-CD-043-001

This page intentionally left blank.

vi 305-CD-043-001

Change Information Page

List of Effective Pages

Page Number

Issue

Title

iii through xii
1-1and1-2
2-1 through 2-4
3-1 through 3-148
AB-1 through AB-4
GL-1 through GL-10

Original
Original
Original
Original
Original
Original
Original

Document History

Document Status/Issue Publication Date CCR Number
Number
305-CD-043-001 Original October 1995 95-0652

Vil

305-CD-043-001

This page intentionally left blank.

viii 305-CD-043-001

Contents

11
1.2
1.3
14
15

21
22
2.3

31
32

3.3

34

Preface
Abstract
Change Information Page

1. Introduction

01 11 o= 1 o o OSSPSR 1-1
0] <SS 1-1
PUIDOSE ...ttt e e st e e e s b e e e e ane e e nan e e e enreesaneeenneeenas 11
Status and SCHEAUIEooeeeeeee e e 1-1
Document OrganiZatioNccccceeiiieeiieeiiesee e e see e e esre e se e reesseeeteesraeereesreesneens 1-1

Parent DOCUMENToooiiiiiie et e e e e e e e s e e e e eara e e e e enre e e e e s nnneeaeennnnes 2-1
APPIICADIE DOCUMENTS ...ttt sr e sb e 2-1
INFOrMationN DOCUMENLSuveieiiie et ectee ettt ere e et e e eare e e eare e e eareeseneeeeenneesneeeans 2-2
2.3.1 Information Document REFErENCEMcccoeeieieciiecieecee e 2-2

3. Real-Time Resource Management Subsystem

Resource Management SUDbSYstem CONLEXT..........ccuviieeiieeiiieeiie e 3-3
RMS String Manager COMPONENTcccueeuereerieeeeseesieseesseeseeseesseessesseessesssesseessessseas 3-5

3.21 RMS String Manager Component CONEXTcccooererererieeieeieneese s 3-6

3.2.2 RMS String Manager Component Interfacesccocveveevie e, 3-9

3.2.3 RMS String Manager Component Object Modelccccvvvevvecvciereeieeces 311
3.24 RMS String Manager Component Dynamic Model ..., 3-30
3.25 RMS String Manager Component Data Dictionarycccccccceeveeeveeieeciieenne 3-82
RMS Resource Monitor COMPONENTccceiuiiiieiieeiee et 3-123
3.3.1 RMS Resource Monitor Component CONteXt..........ccccuererreereeresieeseeseeseens 3-124
3.3.2 RMS Resource Monitor Component INterfacesccoovvverieeieicneneneniens 3-126
3.3.3 RMS Resource Monitor Component Object Modélcccocovvcieiieccieenen. 3-126
3.3.5 RMS Resource Monitor Component Data Dictionaryccccccecveveereenueennn. 3-140
Resource Management Subsystem Performance..........occeoveeveevesceesecsesseeseeseeseens 3-148

IX 305-CD-043-001

311
3211
3231
3.2.3-2
3.2.3-3
3.2.34
3.2.35
3.2.3-6
3.2.3-7
3.2.3-8
3.2.39
3.2.3-10
32311
3.2.3-12
3.2.3-13
3.2.3-14
324141
3.24.24-1
3.24.24-2
3.24.2.4-3
3.24.24-4
3.24.2.4-5
3.2434-1
324441
3.2444-2
3.24.4.4-3
3.24.4.4-4
3.244.4-5
3.2454-1
3.24.54-2
3.2464-1
3.24.6.4-2
3.24.74-1

Abbreviations and Acronyms

Glossary
Figures
Resource Management Subsystem Context Diagram..........ccceceveevenceeseesieseene. 34
RMS String Manager Component Context Diagram...........ccceoeveerenenenenenennns 3-8
RMS String Manager Component Object Modelcocoecvevievieeciecceecee, 3-12
RMS String Manager Component FrGrTelemetry Object Modd 3-15
RMS String Manager Component FrGrCommand Object Modd 3-16
RMS String Manager Component FrGrRT Contact Object Moddl 3-17
RMS String Manager Component FrGrRequestHandler Object Modd 3-18
RMS String Manager Component FrGrMessage Object Moddl ..o 3-20
RMS String Manager Component FrGrStringA ccessRequest Object Modd 3-21

RMS String Manager Component FrGrBackupServiceRequest Object Model . 3-22
RMS String Manager Component FrGrStringFailoverRequest Object Modsd! ... 3-23

RMS String Manager Component FrGrAdjustLimitRequest Object Modd! 3-25
RMS String Manager Component FrGrPrivilegeRequest Object Model 3-26
RMS String Manager Component FrGrServiceRequest Object Moddl 3-27
RMS String Manager Component FrGrStringDel eteRequest Object Modd 3-28
RMS String Manager Component FrGrTableUpdateRequest Object Model 3-29

Initialization of RM S Residing on the Workstation Event Traceccce...... 3-33

Initialization of RMS (Part 1 Of 2)cceeiiiieiieceece e 3-36
Initialization of RMS (Part 2 0f 2)cceeveeieee e 3-37
Initialization of RTSRMS ... 3-38
Initialization of RTSRMS ... e 3-39
Initialization of RTSRMSooiiee e e 3-40
Request for a Real-Time Service Arrives on the Workstation Event Trace........ 3-42
Request for a Real-Time Service Arrives (Part 1 of 2)occovevveveeciicciciee, 3-46
Request for aReal-Time Service Arrives (Part 2 0f 2)cccocvvveeveevvicee e 3-47
Parameter Server and Telemetry Subsystem Event Traceccoceceveieiencnenne 3-48
Command Subsystem EVENt TIaCe.........cccceveerieeiiecieste et 3-49
Real-Time Contact Management SUBSYStEMccccvveevieieseese e 3-50

Execution of String Connection Request on the Workstation Event Trace 3-53
Creation of Mirrored Telemetry Subsystem on the Workstation Event Trace .. 3-54
Execution of String Connection Request on the Real-Time Server Event Trace 3-56
Creation of Telemetry SUDSYSIEM..........cccuririiiieierere e 3-57
Request for Command Authority Arrives on the Workstation Event Trace 3-59

X 305-CD-043-001

3.24.84-1 Regquest for Command AULNONLYcccoveieiiririne s 3-61

3.24.9.4-1 Request for Telemetry Configuration Changecccceevereeenennieneeseesesee e 3-64
3.24.10.4-1 Real-Time Server EVENE TraCecccoieiirieiire ettt 3-66
3.2.4.11.4-1 Request for Dedicated Replay TEleMELrYccoceveeieeierinene e 3-68
3.2.4.12.4-1 Workstation from AnalySISEVENt TraCeccceveririirrie s 3-70
3.2.4.13.4-1 Request for a String Failover Arrives on the Workstation Event Trace 372

3.2.4.14.4-1 Request for String Deactivation Arrives on the Real-Time Server Event Trace 3-75
3.2.4.15.4-1 Request for String Activation Arrives on the Real-Time Server Event Trace 3-78

3.2.4.15.4-2 Command State Change EVENt TraCecccvcueveereieeseeie e see e 3-79
3.2.4.15.4-3 Telemetry State Change EVENt Trate ... 3-80

3.2.4.15.4-4 Real-Time Contact Management and Ground Script Controllercccce....... 3-81
33.1-1 RM S Resource Monitor Component Context Diagramcccccveeeveereeennnne. 3-125
3331 RM S Resource Monitor Component Object Model ... 3-128

3.3.3-2 RM S Resource Monitor Component FrGrUsMonitorRequest Object Model .. 3-129
3.3.3-3 RMS Resource Monitor Component FrGrSwM onitorRequest Object Model .3-131

3.34.24-1 Request for User Station MONITOING.........ceereeiieriereriesiesiesiesieseeeeee e 3-135

3.34.3.4-1 Resource Monitor EVENt TIaCe.......ccoveeieeierierieeie et 3-137

3.34.4.4-1 Failed HardWware SEALUSccccoeieiirieieiesese et 3-139
Tables

3.2.2 RMS String Manager Component INterfacescccvcveveeeevieeseeie e 39

3.3.2 RMS Resource Monitor Component INtErfaces...........coervrerererieieerese e 3-126

Abbreviations and Acronyms

Glossary

Xi 305-CD-043-001

This page intentionally left blank.

Xil 305-CD-043-001

1. Introduction

1.1 Identification

The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL item 046
305/DV 2 under Contract NA S5-60000.

1.2 Scope

The Flight Operations Segment (FOS) Design Specification definesthe detailed design of the FOS.
It alocates the level 4 FOS requirements to the subsystem design. It aso defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 046, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated December
6, 1994. It coversreleases A and B for FOS. This corresponds to the design to support the AM-1
launch.

1.3 Purpose

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule

This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. Thisdocument isunder the ECS Project configuration
control.

1.5 Document Organization

305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.
305-CD-042 contains the detailed design for Command Management Design Specification.
305-CD-043 contains the detailed design for Resource Management Design Specification.
305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Rea-Time Contact Management Design
Specification.

1-1 305-CD-043-001

305-CD-047 contains the detailed design for Analysis Design Specification.
305-CD-048 contains the detailed design for User Interface Design Specification.
305-CD-049 contains the detailed design for Data Management Design Specification.
305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

1-2 305-CD-043-001

2. Related Documentation

2.1 Parent Document

The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for
the ECS Project, Volume 1. General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for

the ECS Project, Volume 2. AM-1 Mission Specific

2.2 Applicable Documents

The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDIS Core System (ECS)
and ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS)
and the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System
(EOS) AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM 1 Project Spacecraft Software
Development and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schemafor the ECS Project

502-1CD-JPL/GSFC Goddard Space Flight Center/MO&DSD, Interface Control

Document Between the Jet Propulsion Laboratory and the Goddard
Space Flight Center for GSFC Missions Using the Deep Space
Network

2-1 305-CD-043-001

530-ICD-NCCDS/MOC

530-ICD-NCCDS/POCC

530-DFCD-NCCDS/POCC

540-041

560-EDOS-0230.0001

ICD-106

none

Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Goddard Space Flight Center Mission
Operations Centers and the Network Control Center Data System

Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

Goddard Space Flight Center/MO&DSD, Data Format control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

Interface Control Document (1CD) Between the Earth Observing

System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

Goddard Space Flight Center/MO& DSD, Earth Observing System

(EOS) Data and Operations System (EDOS) Data Format
Requirements Document (DFRD)

Martin Marietta Corporation, Interface Control Document (ICD)
Data Format Control Book for EOS-AM Spacecraft

Goddard Space Flight Center, Earth Observing System (EOS)
AM-1 Hight Dynamics Facility (FDF) / EOS Operations Center
(EOC) Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced

The following documents are referenced herein and, amplify or clarify the information presented
in this document. These documents are not binding on the content of this FOS Design

Specification.

194-201-SE1-001
194-202-SE1-001
193-208-SE1-001

308-CD-001-004
194-501-PA1-001
194-502-PA1-001

604-CD-001-004

604-CD-002-001

Systems Engineering Plan for the ECS Project
Standards and Procedures for the ECS Project

Methodology for Definition of External Interfaces for the ECS
Project

Software Development Plan for the ECS Project
Performance Assurance |mplementation Plan for the ECS Project

Contractor's Practices & Procedures Referenced in the PAIP for the
ECS Project

Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/
95

Operations Concept for the ECS project: Part 2B -- ECSRelease B,
Annotated Outline, 3/95

2-2 305-CD-043-001

604-CD-003-001

194-WP-912-001
194-WP-913-003
194-WP-920-001
194-TP-285-001
222-TP-003-006
none

560-EDOS-0211.0001

NHB 2410.9A

ECS Operations Concept for the ECS Project: Part 2A -- ECS
Release A, Final, 7/95

EOC/ICC Trade Study Report for the ECS Project, Working Paper
User Environment Definition for the ECS Project, Working Paper
An Evaluation of OASIS-CC for Usein the FOS, Working Paper
ECS Glossary of Terms

Release Plan Content Description

Hughes Information Technology Company, Technica Proposal for
the EOSDIS Core System (ECS), Best and Final Offer

Goddard Space Flight Center, Interface Regquirements Document
(IRD) Between the Earth Observing System (EOS) Data and
Operations System (EDOS), and the EOS Ground System (EGS)
Elements, Preliminary

NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-3 305-CD-043-001

This page intentionally left blank.

2-4 305-CD-043-001

3. Real-Time Resource Management Subsystem

The Real-Time Resource Management Subsystem (RMS) isone of four real-time subsystems that
reside on the Real-Time Servers (RTS) and/or the User Workstations within the EOC. Select real-
time subsystems will also be included in the Instrument Support Toolkit (I1ST) that is executed at
remote |ocations outside of the EOC. The RM Sresides on both of the EOC hosts as well aswithin
the IST and provides management and control functions for the remaining real-time subsystems.
The real-time Server provides a single location where real-time telemetry monitoring occurs. The
command processing is coupled with this monitoring due to the dependency of telemetry
processing for command and telemetry verification. The real-time architecture, facilitated by the
RMS, isbased on providing logical strings, which manage thereal-timeresources. A logical string
isacollection of hardware and software resources, and information about how these resources are
being used within the EOC, to provide spacecraft and instrument control and monitoring during
real-time contacts, simulations, and historical replays. A uniquelogical string existsfor each real-
time scenario (i.e., contact, ssmulation, and historical replay). There arefive attributes of alogical
string that make it unique. These attributes include:

« agpacecraft identifier which marks alogical string for support of a specific mission

« aoperational database identifier which indicates the database version used in configuration
of the software in a specific logical string

 the data source which indicates the origin of the telemetry data being monitored within the
logical string (i.e., real-time, smulation, historical replay)

« the mode attribute which indicates the intended use of the logical string (i.e., operational,
test, training)

« and the state attribute which indicatesif alogical string in the operational modeis actively
performing itsintended function (active), or if it existsonly to performitsintended function
in the event of a hardware or software failure in the active string (backup)

The number and type of resources managed within a given logical string can vary based on the
characteristicslisted above. For example, ahistorical replay logical string requires only real-time
Telemetry processes for the purpose of decommutating the historical data, while real-time,
operational logical strings that monitor real-time contacts require afull complement of Telemetry,
Command and Real-time Contact Management subsystem processes aswell as FUI Ground Script
Controller, DMS Archiver and Parameter Server processes.

Of thefour real-time subsystems, the Resource M anagement Subsystem (RMS) isthe only one that
is considered permanent or persistent. In other words, aslong asthereis areal-time server or user
workstation in operation within the EOC, or an IST running outside of the EOC, the RMS is
availableto provide servicetoitsusers. The RMS providesalevel of control and management for
the real-time subsystems as well as additional select subsystem processes that provide a mission
critical function within the EOC. The RMS is responsible for providing real-time software
resources and failure recovery capabilities in response to user requests.

One of the more important functions of the Resource Management Subsystem is that of privilege

3-1 305-CD-043-001

management. Command Authority and Ground Control Privilege are designations bestowed on
usersto act in critical roles within the EOC. Command Authority is granted to one EOC user per
command destination for the purpose of sending real-time commands to a spacecraft. This
privilege is managed within alogical string to ensure that there is a single point of command for
an EOC spacecraft. The Ground Control Privilege is granted to one EOC user per logical string
for the purpose of modifying the ground configuration of the hardware and software resources
within that logical string. These privileges are granted only to usersthat are pre-authorized by the
Flight Operations Team to perform in these roles. Further, these privileges are granted only to
users signed on to User Workstations within the EOC.

The design documentation that follows describes two types of RMS subsystems, the Real-Time
Server RMS and the Workstation RMS . These subsystems are named according to where they
reside and differ in that they serve complementary functions. The Real-Time Server RMSis made
up of two executable processes, the String Manager and the Resource Monitor. The Workstation
RMS employs only the String Manager process. These subsystems work together to provide the
EOC user with control of real-time resources aswell asglobal visibility into the real-time activities
within the EOC.

Users of the EOC wishing to create a logical string to monitor a real-time contact will allocate
resources on a Real-Time Server in order to allow multiple users to simultaneously connect to, or
access that information from different workstations. The string that is created is termed a shared
service or shared logical string. In this scenario, alogical string is created on a Real-Time Server
by aRTS RMS String Manager process. This action istaken in response to arequest received by
aWorkstation RMS String Manager process and forwarded to the Real-Time Server. Information
isreturned to the requesting workstation after the new logical string is created, and the Workstation
RMS, in turn, provides that information to the user display. This scenario is discussed in further
detail in sections 3.2.4.3 and 3.2.4.4 of this document.

Users of the EOC can also request dedicated services or dedicated logical strings. An example of
a dedicated logical string is that of a dedicated historical replay. In this scenario, a user would
simply request the dedicated service, and resources that reside only on that user's workstation
would be employed to provide the requested service. Other users would not have visibility into,
or knowledge of that user's activities, nor would other users be able to connect to, or otherwise
accessthat activity. In other words, the activity is dedicated to asingle EOC user. Shared replays,
using shared logical strings can also be established for multiple users. The dedicated replay
scenario is discussed in further detail in section 3.2.4.11 of this document.

When alogical string exists on a Real-Time Server it is shareable by definition. When an EOC
user connectsto alogical string, that user is provided a set of telemetry processesto execute on his
local workstation, equal in number to those that are executing within the selected logical string on
the Real-Time Server. The user must decide at connect time if he wants to control the ground
configuration of the processes that are running on his local workstation or simply take the ground
configuration and of the processes running on the Real-Time Server. To make this selection, the
user must connect to the logical string in one of two ways: by mirrored connection or by tailored
connection. These connection methods are described in the paragraphs that follow.

When a user requests a mirrored connection to a logical string, that user is provided the same
telemetry ground configuration as the telemetry processes running on the Real-Time Server.

3-2 305-CD-043-001

Changes to the ground configuration on the Real-Time Server can only be made by a single user
per logical string with the Ground Control Privilege. After a mirrored user connects to a logical
string, all subsequent changes to the ground configuration of the logical string are made to the
telemetry processes on the user'slocal workstation aswell. Thus, the ground configurations of the
telemetry processes on the Real-Time Server and those that execute on the User Workstation are
synchronized. A benefit of the mirrored connection isthat the user of this connection iseligible to
request Ground Control Privilegefor thelogical string to which heisconnected. If thisuser ispre-
authorized for that privilege, he can potentially control the ground configuration of the telemetry
processes that execute on the Real-Time Server for thislogical string. It isnot required, however,
that the mirrored user serve in this capacity. Mirrored logica string connections will be the
nominal connection type of choice among EOC users.

When a user requests a tailored connection to a logical string, that user is initially provided the
same telemetry ground configuration as the telemetry processes running on the Real-Time Server.
Upon connection however, the tailored user controls the ground configuration for the telemetry
processes created on his local workstation independent of any privilege. Changes made by this
user affect hislocal processes only. Further, this user is not eligible to gain the Ground Control
Privilege that would allow him to modify the ground configuration of the telemetry processes
running on the Real-Time Server for this particular logical string. Tailored logical string
connection will be the nomina connection type of choice among IST users.

Ground Control Privilege, much like Command Authority, is requested by EOC users and granted
by the RMS to users that are pre-authorized by the Flight Operations Team to have this privilege
for the given mission supported in agiven logical string.

3.1 Resource Management Subsystem Context

Upon system startup of aReal-Time Server, the Resource Management Subsystem will request and
receive a default configuration procedure from the Data Management Subsystem. The default
configuration filewill convey to agiven RMS, information about the real-time spacecraft contacts
and backup processing for which it will beresponsible. Thisfilewill convey to the RMSthe same
information that a user entering a real-time service request would provide. This allows the same
RMS software to be used to respond to the service request whether the origin is an EOC user or
default configuration file.

When alogical string is requested by the FOS User Interface Subsystem and subsequently created
by the Resource Management Subsystem, the supporting software processes will be created as
needed and configured for the specific purpose they are to fulfill. Software processes created by
the RMSinclude Telemetry, Command, and Real-Time Contact Management subsystems, as well
as Archive, Ground Script Control and Parameter Server processes. Additional configuration
information can be conveyed to these subsystems after system startup on an as needed basis. User
directives from FUI can be sent to RMS, where they will be forwarded to the appropriate support
subsystem for action. Directive completion status's will be returned through RM S and returned to
FUI for display. Any information received by the support subsystems that modify the ground
configuration, isalso sent by RMSto any backup logical stringsthat may exist. Inthe case of real-
time Telemetry processes, the configuration changes are al so forwarded to the Telemetry processes
of mirrored users. Thisalows RMS to ensure configuration synchronization between active and
backup strings and between Telemetry processes on User Workstation and Real-Time Servers. In

3-3 305-CD-043-001

v-€

T00-E0-AD-S0E

CSMS

RC

A
s, Fu

né'tglggauest
: Requésts

DMS

ConfigSnapSho

<\Events\li)p{ Requests
Ngues espon
Db Reguest Besponsa
Termin e%rlna equests

equests

RMS

ﬁkF?eq uests

R

i

St ir}gT(?lIJoI%is
PS (étar?up?n 0 CMD

V
ound
Ccc;gnct%‘er

3.1-1. Resource Management Subsystem Context Diagram

Status

[

M
Ao
D §0(3uer uest /f
Re§%errlses Requested
C Re pon)ées ﬁ)a%a
napﬁw
tor

nfiginfo/Requests

o/
S

TLM

Y

PIDs/StringID

ANA

the event of hardware or software failure the user would be notified of the failure, and issue a
request for string failover via a FUI request window. The backup string established prior to the
failure will assist RMS in restoring user capabilities with minimal interruption.

The CSMS/SCDO Management Subsystem will be integrated with the DM S Event Handler to
provide the capability to monitor the hardware and software components of the EOC for changes
in operational status. When new software resources are employed by RMS, MSS functions are
invoked to register the new resources for monitoring. When changes in resource status's are
detected by the M SS Monitoring service, amanagement event is generated by the M SS service and
forwarded to the DM S Event Handler. The Parameter Server isinformed of selected status changes
viaaproxy interface with the Event Handler. The Parameter Server in turn provides information
about status parameters to the RM S and any other FOS application that registers an interest.

Both the Data Management and Analysis Subsystems have interface proxies from RMS for the
purpose of sending requestsfor historical telemetry replay. Upon request, RM S providestelemetry
subsystem resource(s) on a RTS or User Workstation to facilitate processing of historical
telemetry. Requests for this service will originate from the user via the Data Management
Subsystem if the user wishesto monitor thereplay, or viathe Analysis Subsystem if the user wishes
to have off-line analysis performed on the historical data. In either case, the RMS provides an
identical service of telemetry parameters to the Parameter Server alocated for the request. The
Parameter Server, in turn serves the desired data upon request by the end-user subsystem.

3.2 RMS String Manager Component

The Resource Management Subsystem String Manager Component is designed to beinstalled and
executed on the Real-Time Servers and all User Workstations within the EOC aswell asall 1STs
at remote locations outside of the EOC. The role that the RMS plays differs however, depending
on its host.

When the String Manager Component is executed on a Real-Time Server, it serves severa
important functions. These functions include: responding to requests dealing with management
of shared logical strings and user privileges, accessing the default configuration procedures and
executing startup logical string requests; and communicating with the Resource Monitor
Component (this is unique to the RTS RMS because the Resource Monitor Component is not
executed on the User Workstations). The roles of the Real-Time Server RMS process are
explained in the scenarios described in Section 3.2.4.1, .4, .6, .8, .10, .14, and .15.

The Workstation RMS String Manager processes serve a number of unique and important
functions within the real-time architecture as well. These functions include: fielding and
responding to user requests, from the FOS User Interface Subsystem, the Data Management
Subsystem and the Off-line Analysis Subsystem; synchronizing telemetry configurations with
backup logical strings and mirrored logical string connections; coordinating requests that affect
multiple Real-Time Servers; granting and managing dedicated service requests, and employing
CSMS/MSS services for user authorization lookups. The roles of the Workstation RM S process
are explained in the String Table Parameters to Parameter Server scenarios described in Sections
3241, .3 .5 .7,.9 .11, .12, and .13.

3-5 305-CD-043-001

3.2.1 RMS String Manager Component Context

Upon execution of the RM S String Manager Component the first task isto determine what type of
machineishost to the component. Thisisdetermined through aquery to the CSMS/CSS Directory
Naming Service. The host type determines the role that the String Manager Component isto play.
These roles were described briefly in the preceding paragraphs in Section 3.2. The Workstation
String Manager and Real-Time Server String Manager Component contexts are described in the
paragraphs that follow and areillustrated in Figure 3.2.1-1.

The Workstation String Manager is responsible for receiving and responding to all user requests.
Most user requests are received directly from the FOS User Interface Subsystem, while some
dedicated service requests are received via the Data Management and Off-line Analysis
subsystems. In cases where shared resources are involved, the Workstation String Manager is
responsible for forwarding user requests to Real-Time Servers and coordinating activities between
those servers (and their corresponding RTS String Manager Components) to ensure that
configuration synchronization throughout the system is maintained.

When auser requests the Command or Ground Control privilege, the Workstation String Manager
component has an additional responsibility. Before forwarding the privilege request to the RTS
RM Sfor action, the Workstation String Manager first determinesif the user isauthorized to receive
the privilege. A CSMS/CSS Authorization Service is queried with a privilege type and user
identifier in order to determine if the requesting user is pre-authorized by the Flight Operations
Team to serve in the requested capacity. If isuser isauthorized, the request will be forwarded to
the RTS String Manager for action. Otherwise, a response is returned to the FUI process that
generated the request and an event is generated indicating that the request was denied. (This
request will be trandated by the Data Management Subsystem into a management event that will
be reported to the MSS Management Agent as a reportable security event.)

The Workstation String Manager is directly responsible for creating logical strings to support
dedicated service requests and connection requests only. Therefore, the Telemetry subsystem is
the only real-time subsystem that the Workstation RM S creates and configuresin response to these
service requests. Telemetry components are created in response to dedicated replay requests from
the Data Management Queue Manager and the Off-line Analysis Request Manager, aswell asin
response to user connection requeststo any shared logical string. Detailed scenarios describing the
Workstation String Manager role in providing this service can be found in Sections 3.2.4.5 and
3.2.4.6.

If upon system startup the String Manager Component determines that it's host is a Real-Time
Server, it's next task is that of accessing the database information and default configuration files
that are stored by the Data M anagement Subsystem. The database information file provides startup
configuration information for the Resource Management Subsystem. The default configuration
file contains information about active missions that the EOC is supporting. The String Manager
Component accesses this file and executes any startup logical string requests that may exist in that
filefor it'shost system. Thisfunction allowsfor the monitoring of areal-time contact independent
of an operator in the EOC with an active logical string connection.

Rea-Time Server String Manager Components respond to user requests forwarded by the
Workstation String Manager Components dealing with creation and maintenance of shared logical
strings and user privileges. As shown in the RMS String Manager Component Context Diagram

3-6 305-CD-043-001

in Figure 3.2.1-1, the RTS String Manager does not have an interface with the FOS User Interface
Subsystem. All user requests and responses are filtered through the Workstation String Manager
Component.

Upon request for alogical string to monitor a real-time EOS spacecraft contact, the RMS String
Manager Component will create afull complement of software components to satisfy that request.
The software components that are created and configured in this scenario include: a real-time
Telemetry subsystem, a real-time Command subsystem, a Real-Time Contact Management
subsystem, a Ground Script Controller process, a number of DMS Archive processes, and a
Parameter Server process. In the event of a request for a backup logical string, the real-time
subsystem processes will need to be synchronized with afull complement of similar processes on
another Real-Time Server. While it is the responsibility of the Workstation String Manager
Component to coordinate this activity, it isthe responsibility of the RTS String Manager processes
to respond to a snapshot request and load messages to affect this synchronization process. The
identical snapshot request and load scenario is performed for backup logical string creation and
mirrored string connection. This scenario is explained in detail in Sections 3.2.4.5 and 3.2.4.6
describing mirrored logical string connection.

Communicating with the RM S Resource Monitor Component isunique to the RTS String Manager
Component because the Resource Monitor Component is not executed on the User Workstations.
The Resource Monitor Component is responsible for mission critical component monitoring. It
should be reiterated that there is no mission critical real-time processing on User Workstation
within the EOC or I STs outside of the EOC. Only Real-Time Serversact ashost to mission critical
real-time processing. For this reason, Resource Monitor Components are installed and execute
only on Real-Time Servers within the EOC.

Both the Workstation and Real-Time Server String Manager Components use the CSMS/CSS
Directory Naming Service for host information and therefore, a CSMS interface is illustrated on
both sides of the Context Diagram in Figure 3.2.1-1.

3-7 305-CD-043-001

Parameters

FUl |<&——— StringTable

DMS

PS <—

8¢

TLM

Analysis

CSMs

L

\

RequestStatus

Requests

QueryDbld, Events
GetOperDb
Request Responses

Dbld, OperDb

ReplayRequests
Terminate String Requests

StringTableParameters

Configinfo

Telemetry PID
StringID

DedicatedReplayRequest
TerminateStringRequest

LookupUserAuthorization
LookupWksAuthorization

DNS Queries

\

StringTableUpdate
RequestCompletion
SnapshotCompNotif
StringStateUpdate

StringTableUpdateRequest
ForwardedRequests

RequestResponse

T00-E0-AD-S0E

QueryDbld
GetDefConfigProc

GetOperDb, Events >> DMS

DataArchiverConfiginfo

Dbld
OperDb
DefConfigProc
CMD
Configinfo
SnapshotReq
Ground
Script
ConfigSnapshot IControllel
Configinfo
DNS Queries
Query Response ———— CSMS
MonitorProcessld
MonitorWks
StopMonitorPID
StopMonitorWk:
opMomonis ——\] rws:
Resource
Configinfo Monitor
SnapshotReq

ConfigSnapsh

Startup Info

Configlnfo\

SnapshotReq

TLM

PS

ConfigSnapshot ——— RCM

Figure 3.2.1-1. RMS String Manager Component Context Diagram

3.2.2 RMS String Manager Component Interfaces
Table 3.2.2 RMS String Manager Component Interfaces (1 of 3)

Interface Service | Interface Class Iné(?rface Service Provider |Service User| Frequency
ass
Description
Configuration of [FADIRMs . |ENablesRMS | Data 0-4 per string
Data Archiver Config to configure | Archiver RMS creation
Proxy the data ~ 8 per shift
archiver
Configuration of FtTI EnablesRMS 1 per RT
TLM Dump process|Dump toconfigurea| TLM RMS string
Config TLM dump creation
process ~ 2 per shift
Configuration of FtTI EnablesRMS 1 per TLM
TLM Decomm Telemetry toconfigurea| TLM RMS type per
process Config TLMdecomm string
process creation or
connection
~ 12 - 35 per
shift
Sending config. to |FuCcGsc EnablesRMS 1 per RT or
GSC Proxy to configure GSC RMS SIM string
the GSC creation
~ 2 per shift
Configuration of [FoGnRms EnablesRMS 1 per RT or
CMD Format Format to CMD RMS SIM string
process Proxy configure the creation
CMD Format ~ 2 per shift
process
Configuration of FoGnCmdRmsFop |EnablesRMS 1 per RT or
CMD Fop process |Proxy to configure CMD RMS SIM string
the CMD Fop creation
process ~ 2 per shift
Configuration of FoGnRms EnablesRMS 1 per RT or
CMD Transmit Transmit to configure CMD RMS SIM string
process Proxy the CMD creation
Transmit ~ 2 per shift
process
Configuration of FoGnRms EnablesRMS 1 per RT or
RCM process RcmProxy to configure RCM RMS SIM string
an RCM creation
process ~ 2 per shift
Reads requests FrGrStrmanResMon|Enables the 30 - 100 per
sent by the RMS |IF RMS RMS RMS contact
String Mgr. Resource |Resource Monitor [String Mgr.
Monitor to
read requests
from String
Mgr.
3-9 305-CD-043-001

Table 3.2.2 RMS String Manager Component Interfaces (2 of 3)

Interface Service | Interface Class Ing—‘i-rface Service Provider |Service User| Frequency
ass
Description
Receve WS of FrGIRMS Enables the -100 per
RTS RMS requests|\WsRmsIF respective WS/RTS WS/RTS contact
RMS to RMS RMS
receive
requests
Receives requests |FrGr EnablesRMS
from FUI, DMS or |Request to receive RMS FUI 1-10 per
ANA Handler requests ANA shift
DMS
Authorization and [FoGnCsms EnablesRMS
Name Service IF to interface CSMS RMS 1 per service
Queries with CSMS or
name service connection
authorization request
Gets and Sets FoPsClient EnablesRMS
parameters from/to |IF to interface PS RMS 30 -100 per
PS with PS contact
Accessing files in [FoDsFile EnablesRMS
DMS Accessor to access DMS RMS 1-5perweek
files within
DMS
Send replay FrGrReplayRequest |[Enables DMS
requests to RMS |Proxy external RMS FUI 1-10 per shift
Subsystems ANA
to send
replay
requests
Send requeststo |[FrGrRms Enables FUI
RMS FuiRequest to send all RMS FUI 30 - 100 per
Proxy types of contact
requests
RTS RMSto WS |FrGrRts Enables the
RMS Interface Rms RTS RMS to | WS RMS RTS RMS 30 - 100 per
Request send contact
Proxy requests to
WS RMS
RTS RMS to FrGrStr Enables the
Resource Monitor |ManRes RTS RMS to [Resource RTS RMS 30 - 100 per
Interface MonProxy send Monitor contact
requests to
Resource
Monitor
3-10 305-CD-043-001

Table 3.2.2 RMS String Manager Component Interfaces (3 of 3)

Interface Service | Interface Class In(t:(—‘i-rface Service Provider |Service User| Frequency
ass
Description
Sends event mventLogger Enables RMS
messages to event to log event DMS RMS 30 - 100 per
logger messages contact
WS RMS to RTS |[FrGrWs Enables the
RMS Interface Rms WS RMSto |RTS RMS WS RMS 30 - 100 per
Request send contact
Proxy requests to
the RTS RMS

3.2.3 RMS String Manager Component Object Model

Figure 3.2.3-1 illustrates a top level view of the RMS String Manager Component. Subsequent
Figuresillustrate, in more detail, specific objects as noted on Figure 3.2.3-1. The objects shown
on Figure 3.2.3-1 allow the RM S to create, configure, and reconfigure string software resources.

Two types of Rogue Wave objects are utilized to facilitate the String Manager in performing its
tasks. These include the RWSet object and the RWCString object. The RWSet object is a
collection class that can store other String Manager objects. The RWCString object is used to
manage character sets.

There are several "proxy" and "receiver classes’ shown on the object model to facilitate
communication with other RMS processes. The FrGrWsRmsRequestProxy allows a WS RMSto
send Request objects to the RTS RMS. This proxy class will receive a status on each request it
sendsto aRTS RMS. For every RTS that is used, there will be a FrGrWsRmsRequestProxy that
isstored inaRWSet. Each RTS RMS contains a FrGrRtsRmsRequestProxy that allows the RTS
RMS to send Request objects to the WS RMS. Like the FrGrWsRmsRequestProxy, the
FrGrRtsRmsRequestProxy will receive a status on each request it sends to a RTS RMS. The
FrGrRtsRmsRequestProxy provides the capability to multicast objects to every WS RMS when
necessary. Thiswill mainly be used to multicast the RTS RMS String Table. Both the WSRMS
and the RTS RMS will have a FrGrRmsWsRmslF object for receiving objects from either a
FrGrwWsRmsRequestProxy or a FrGrRtsRmsRequestProxy. When an object is received, it will
placeit in a Request Queue. The queue will be implemented with aRWSet. The FrGrController
will call the FrGrRmsWsRmslF object's CheckQueue operation to retrieve an object from the
gueue. The FrGrStrManResMonProxy classwill alow the String Manager to send Requeststo the
RM S Resource Monitor.

Other proxy and receiver classes shown on the object model allow the String Manager to
communicate with external subsystems. The FoPsClientlF object enables the String Manager to
provide string table parameters. The FoGnCsmslF objects enables the String Manager to utilize
the CSMS name server as well as utilize CSMS security operations. Security operations could
include ensuring whether a user is permitted to have command or ground control authority. The
FdEvEventLogger object enables the String Manager to send events to DMS. The
FoDsFileAccessor enables the String Manager to access files within DMS. The FuCcGscProxy
object enables the String Manager to send requests to the Ground Script Controller process. The

311 305-CD-043-001

(A

T00-€E¥0-dD-S0E

myStringTable

Rwset

string objects only
contain set and get
operations

FrGrString

FrGrParameterServer
~ myPsPid : EcTint

FoGnCsmsIF
FrGrStiManResMonProxy FoD:
myNameServer : Directory_Naming_Service*
- myEcsSecurity : ECSSecurity* - myXDR : XDR
- mySoftwareRegister: SoftwareRegister* - myResMonAddress: Address*
Figure 3.2.3-5
T UnregisterSw(EcTInt Pid): EcTint + _Initialize(FrGrController* Controllery ECTInt seeFigure
+ RegisterSw(EcTInt Pid): EcTInt + SendRequest(FrGrMonitorRequest* Request) ECTINt created by created by
+ CheckUserAuthorization(RWCString Userld, RWCString Role)EcTI| + ReceiveStatus(FrGrMonitorRequest* Request) EcT|nt
+ CheckHwAuthorization(RWCString Hwld, RWCString Role)EcTint T
+ QueryRole() : RWCString credigp! by
+ CountRis() : ETint FrorContoller
d by
ul T = myHost : RWCString
FoPsClientlF d by - myo| DB : RWCString
- myDefConlnfo: RWSet*
- myAddress : RWCString - miDelConFile: RWCString
- myParameterTable: RWHashDictionary d by - myStringTable : RWSet*
+ RegisterClient(Cid, Address,Mode,PidList) EcTht FdEVEventLogger _ myFdEVEventLogger: FAEVEventLogger*
+ UpdateParameters(PidBuffer): ECTVoid dby— . myCi
+ UnregisterClient(Cid): EcTVoid -) o " N 4
+ Updatelnterests(Cid,PidList): ECTInt GenEvent(RWCString* msg) T R
d by - myFr q RWSet*
myFrGrWsRmsRequestProxySet | d by - myFoPsClientlF : FoPsClientlF*
ted b - fandler: q dler
RWSet B N RoDeF
created - myFoGnCsmsIF : FoGnCsmsIF*
by
- ’e + inftalize() : EcTIt
+ run() : ECTVoid
FrGrWsRmsRequestProxy RwSet - setRole() : ECTInt
Tt - MakeFdDsFileAccessor(): EcTint
- myXDR: - EventLoggerobject(): EcTint
- myRtsRmsAddress: Address* myDefConlnfo . makeFrGrRmsWsRmsIFobjeci(): EcTInt
+ Initalize(FrGrController” Controller, RWCSting RISIQECTht . 2:;1‘,’5{,?;32’;’."&%3"‘
+ SendRequest(FrGrRequest* Request) EcTInt -
+ ReceiveStatus(FrGrRequest* Request) EcTint - loadDefConinfo(): EcTint
Ivestatus(FrGrRequ au - makeStringTable(): EcTint
- exDefConDirs(): EcTint
FIGrRMSWSRMSIF - MakeFrGrRtsRmsRequestProxy(x EcTint
RequestQueue - makeFrGrWsRmsRequestProxies() EcTint
myEventLogger : FAEVEventLogger* auestQuewe o . j y(ECTInt D)EcTjnt
myHost : RWCString q RWSet - queryRTSstrings(): EcTint
myRmsAddress : Address P - makeFrGrRequestHandler(): EcTint
- myRequestQueue: RWSet’ - makeStrManResMonProxy(): EcTInt
+ q q quest) EcTint
+Initialize(FrGrController* Controllery ECTInt ~ makeFoPsClientlF(: EcTin
: CheckQueue() : FrGrRequest* cen - makeFoGnCsmslIFobject(): ECTInt
q q quest)
+ sendStatus(FrGrRequest* sentRequest) EcTInt
v processes
creates 1
= : FIGIR
st
FrGrRtsRmsRequestProxy a roreque FrrSoftware
O XoR T sends = myDbid : RWCString|
- : . - myScld : RWCString
myMulticastAddress : Address' see Figure 3.2.3-7,8,9,10,11,12,13 14 - myState : enum
& Initialize(FrGrController Controller) ECTINt - myRmsAddress : Address*
+ SendRequest(FrGrRequest* Request, Address* WsRmsAddress)EcTjnt T Stop0 TEeT
+ ReceiveStatus(FrGrRequest* Request) EcTint * Sop0:
+ Multicast(FrGrRequest* Request). EcTInt k

all objects can
generate events

FrGrGroundScriptController

‘myGscProxy : FuCcGscProxy*
myStringld : EcTInt
myCmdAddress : Address*
myTImAddress : Address*
myRtsld : int

Wb+

Start() : EcTint
Stop() : EcTint

Reconfig(EcTInt configparam): EcTint
Reconfig(RWCString configparamy EcT|
Config() : EcTint

tp—

+ Start() : EcTInt

- myStringID : int

FrGrDedicatedReplayString

+ Stop() : EcTInt d by - myDbld : RWCString
- mySCid : RWCString
d by - myTelemetry : FrGrTelemjetry*
myUserld
v N myUserList
RWCString RWSet =l
FrGrsharedReplayString
N - myUserList: RwWSet*
myWksld N sk _ ist: RwSetr

RWCString

myWksld e myTailoredWsListe

- myTailoredwsList: RWlet*
- myGCid : RWCString

- myGCwsID : RWCStrin|
- myRTSid : RWCString

| RWCString |_<>| RWSet

FrGrTelemetry

FrGrCommand

see Figure 3.2.3-3

see Figure 3.2.3-2

FrGrSimulationString

~ myCommand : FrGfCommand®
myRTContact : FrdrRTContact*
H ontroller*

myGsc :
- myCAid : RWCStrifig
myCAwsID : RWCString
- myMode : RWCStrjng

FrGrRTContact

" see Figure 3.2.3-4

~ myActiveStringID: R
- myState : int

Estring

Figure 3.2.3-1. RMS String Manager Component Object Model

FrGrRequestHandler object isareceiver object. This object receives objectsfrom FUI, DMS, and
Analysis. These objects are shown in Figure 3.2.3-6. Figure 3.2.3-5 illustrates the
FrGrRequestHandler object in much more detail.

There are severa string objects shown on the diagram. These objects contain string related
information as well as pointers to String Manager software resource objects. String object
operations are limited to "set" and "get" operations. The FrGrString object is an abstract class that
only containsa String ID. The FrGrDedicatedReplayString is created when a user wishesto create
telemetry processes on a workstation with a configuration dedicated solely to the user. The
configuration would not be shared by other users. The FrGrSharedReplayString is created when a
user creates telemetry processes on a RTS with a configuration that is shared by additional users.
These users are tracked by the corresponding User and Workstation Lists associated with the
object. The FrGrSimulationString is created when auser wishesto create asimulation string. This
string will have similar attributes to a FrGrRealtimeString. The FrGrRealtimeString will contain
additional attributes for identifying it as a backup or active string. If the FrGrReatimeString isa
backup string, it identifies the string that it is backing up. The FrGrRealtimeString is the only
string that will be backed up or failed over by the String Manager. When a string object is created,
itisplaced in astring table. The string table isimplemented with a RWSet collection class.

Many of the objects shown on the diagram will be used to identify string resources. The
FrGrSoftware object is an abstract object. It contains attributes and a Stop operation that is
inherited by other string resource objects. The FrGrGroundScriptController object isused to start,
stop, configure, and modify the configuration of the FUI Ground Script Controller process. The
FrGrRTContact object is used to start, stop, configure, and modify the configuration of the RCM
processes. In addition, it enables the String Manager to take a configuration snapshot of the RCM
processes. This configuration snapshot is used to configure backup RCM processes. The
FrGrRTContact object isshown in moredetail in Figure 3.2.3-4. The FrGrCommand object isused
to start, stop, configure, and modify the configuration of the Command processes. In addition, it
enables the String Manager to take a configuration snapshot of the Command processes. This
configuration snapshot is used to configure backup Command processes. The FrGrCommand
object is shown in more detail in Figure 3.2.3-3. The FrGrTelemetry object is used to start, stop,
configure, and modify the configuration of the Telemetry processes. In addition, it enables the
String Manager to take a configuration snapshot of the Telemetry processes. This configuration
snapshot is used to configure backup or mirrored Telemetry processes. The FrGrTelemetry object
isshown in moredetail in Figure 3.2.3-2. The FrGrParameterServer object isused to start and stop
the Parameter Server process.

The FrGrRequest object is an abstract class that contains a virtual Execute operation. Several
Reguest objects are derived from the FrGrRequest object and each will overwrite the Execute
operation. The Execute operation is called by the FrGrController object and is responsible for
containing all functionality or calling any subroutines necessary for processing a particular request.
The classes derived from the FrGrRequest object are shown in Figures 3.2.3-7,8,9,10,11,12,13,14.

The FrGrController object enables the String Manager to initialize itself, communicate with other
processes, and initiate the processing of requests. At initialization, the FrGrController determines
what type of host it is running on via the CSMS name server. A host can be a real-time server
(RTS) or aworkstation (WS). Once the host is determined, it creates appropriate proxy objects,
receiver objects, and collection classes. If the Controller is running on a RTS, it creates default

3-13 305-CD-043-001

configuration requests from information in the default configuration file that is retrieved from
DMS. These requests are notified by the Controller to execute. Default strings are created as a
result of processing the default configuration requests. Oncethe Controller hasinitialized, it enters
a'"run" state. Inthis state, the Controller will notify requests to execute as they are received from
other processes.

The FrGrTelemetry object is derived from the FrGrSoftware object. It contains a
FrGrTelemetryProcess object for every type of telemetry process that it needs to communicate
with. For aReal-Time Operational String, the FrGrTelemetry object would point to afull range of
FrGrTelemetryProcess objects. This would include a state check process, a dump process, and
three decommutation processes that will be used for decommutating housekeeping, health& safety,
and standby telemetry. The FrGrTelemetry object will notify the FrGrTelemetryProcess object to
start, stop, request a configuration snapshot, modify an existing configuration, configure using a
snapshot configuration file, or configure using a database. Each FrGrTelemetryProcess object is
responsible for communicating with a single telemetry process via a FtTITelemetryConfig object
or a FtTIDumpConfig object. The decommutation and dump processes require a DMS Data
Archiver process to be configured in order for the incoming telemetry datato be archived. If the
FrGrTelemetryProcess is associated with a decommutation or dump process on the RTS, the
FrGrDataArchiver object is created. This object is responsible for starting, stopping, and
configuring the data archive process. The FrGrDataArchiver object communicates with the Data
Archiver process via the FACfRM SConfigProxy.

The FrGrCommand object is derived from the FrGrSoftware object. It contains a
FrGrCommandProcess object for every type of command process that it needs to communicate
with. This would include a Format process, a FOP process, and an Transmit process. The
FrGrCommand object will notify the FrGrCommandProcess object to start, stop, request a
configuration snapshot, modify an existing configuration, configure using a snapshot configuration
file, or configure using a database. Each FrGrCommandProcess object is responsible for
communicating with a single command process via a FoGnRmsFormatProxy object, a
FoGnCmdFopRmsProxy object, or a FoGnRmsTransmitProxy object.

The FrGrRTContact object is derived from the FrGrSoftware object. It contains a
FrGrRcmProcess object for every type of Real-time Contact Management process that it needsto
communicate with. This would include a NoutMgr process and an EoutMgr process. The RCM
subsystem consists of two additional processes. These are the NinMgr process and the EinMgr
process. However, the String Manager will send information to and start these processes via the
NoutMgr and EoutMgr processes. The FrGrRTContact object will notify the FrGrRcmProcess
object to start, stop, request a configuration snapshot, modify an existing configuration, configure
using a snapshot configuration file, or configure using a database. Each FrGrRcmProcess object
is responsible for communicating with a single RCM process via a FoGnRmsRcmProxy object.
TheNinMgr and EiInMgr processes requireaDM S Data Archiver processto be configured in order
for theincoming Nascom blocks and Customer Operations Data Accounting (CODA) reportsto be
archived. The NoutMgr and EoutMgr processeswill be notified of the Data Archiver addresswhen
they are started. They will pass thisinformation to the NinMgr and EinMgr processes. In order to
create and configure the Data Archiver process, a FrGrDataArchiver object is created by the
FrGrRcmProcess object. This object is responsible for starting, stopping, and configuring a data
archive process. The FrGrDataArchiver object communicates with the Data Archiver process via
the FACfRM SConfigProxy.

3-14 305-CD-043-001

q1-€

T00-E0-AD-S0E

FrGrSoftware

- myDbld :RWCString
- myScld : RWCString
- myState :enum

- myRmsAddress : Addfess*

+ Stop() :EcTint

FiGrTelemetry

myStateCheck : FrGrTelemetryProcess*
myDiagnostic : FrGrTelemetryProcess*
myHKDecomm : FrGrTelemetryProcess*
myHSDecomm : FrGrTelemetryProcess*
mySBDecomm : FrGrTelemetryProcess*
myTimType : EcTint

myDmsAddress : Address*

oA

MakeDmsAddress() : EcTint
MakeRmsAddress() : EcTInt

ChangeState(RWCString State) EcTint
Stop() : EcTint

Reconfig(RWCString configParameters) EcTint
Snap() : EcTint

Config(Di ., HKD , HSD ., SBD

Config() : EcTint

: EcTIn|

Figure 3.2.3-2. RMS String Manager Component FrGrTelemetry Object Model

FrGrTelemetryProcess

- myDbld : RWCString
myScld : RWCString

myState : enum

- myRmsAddress : Address*

- myDataArchiver : FrGrDataArchiver*

- myTelemetryConfig ~ : FtTITelemetryConfig*
- myDumpConfig : FtTIDumpConfig*

- myProcessType : RWCString

- myFrGrTelemetry : FrGrTelemetry*

- myTimPid : EcTint

- mySnapFilename : RWCString

FrGrDataArchiver

- myDbld : RWCString
- myScld : RWCString

StartTLMProcess()

StopTLMProcess()

SnapTLMProcess()
ReconfigTLMProcess(RWCString configParameter)
SnapConfigTLMProcess(RWCString ConfigFile)
ConfigTLMProcess()

R

- Buffer

SendDirective()
Snapshot()
Configure()
Shutdown()

+ o4+

FtTITelemetryConfig FtTIDumpConfig

starts

- myPid :EcTint
- myRMSConfigProxy : FdC
- myRmsAddress Address*|

IRMSConfigProxy*

+ Start() :EcTint
+ Config) :EcTint
+ Stop() :EcTint

FdCIRMSConfigProxy

+ send(ListenAddr,DataTypeid)
+ receive() :int

tint

91-€

T00-E0-AD-S0E

FrGrSoftware

~ myDbld : RWCString
- myScld : RWCString
- myState : enum

- myRmsAddress : Addfess*

W

Stop() : EcTint

FrGrCommand

myDataType : enum

myCmdFormat : *FrGrCommandProcess
myCmdTransmit : *FrGrCommandProcess
myCmdFop : *FrGrCommandProcess

myDms

Address : *Address

A

MakeDmsAddress() : EcTInt
MakeRmsAddress() : EcTInt
ChangeState(RWCString State) : EcTint

Stop()
Snap()

: EcTint
EcTint

Reconfig(RWCSting configParameter) : EcTint

Config(RWCString FormatFile, RWCString UplinkFile, RWCString FopFile) : EcTifit

Config() : EcTint

FrGrCommandProcess

myProcessType : enum
myDataType : enum

myDbld : RWCString

myScld : RWCString

myState : enum

myRmsAddress : Address*
myFrGrCommand : FrGrCommand*
- myCmdProcessPid : EcTint

- myF Y : FoGnRmsF

- myT y : FOGNRmsT} y
- myCmdFopProxy : FoGnCmdFop

- mySnapFilename : RWCString

StartCmdProcess() : EcTInt
StopCmdProcess() : EcTInt
SnapCmdProcess() : EcTint
ReconfigCi String Ct)
SnapConfigCmdProcess(RWCString ConfigFile) : EcTint
ConfigCmdProcess() : EcTint

SR E A4

© EcTIpt

FoGnRmsFormatProxy

SetCmdAuthUser(EcTInt, EcTInt) : EcTBoolean
ConfigSnapshotRequest(RWCString) : EcTBoolean
ReadConfigSnapshot(RWCString) : EcTBoolean
Shutdown() : EcTBoolean

I

TCdPrereqC EcTi

oolean

Figure 3.2.3-3. RMS String Manager Component FrGrCommand Object Model

FoGnCmdFopRmsProxy

FoGnRmsTransmitProxy

GelConfigSnapshot() : EcTVoid
ChangeRole(enum RoleType myRole) : EcTVoid
StartAdWithoutClew() : ECTVoid
StartAdwithClewCheck() : EcTVoid
TerminateAd() : EcTVoid

ResumeAd() : EcTVoid

SelectCtiu(EcTUInt myCtiu) : EcTVoid
SetVs(EcTUInt myVs) : EcTVoid
SetWinWidth(EcTUInt myWinWidth) : EcTVoid
SetTimelnitialVal(EcTULongint myT1Val) : EcTVoid
SetTransmissionLimit(EcTUInt myLimit) : EcTVoid
SetTimeoutType(EcTBoolean myTimeoutType) : EcT|
ShutdownFop() : EcTVoid

P

S.
=

: RWCollectable

PR I i i

GetMessage() : RWCollectable®
Confi Dbid, YMode,OpMode,
Archive(enum ArchiveState {enable,disable}) : EcTBoolean

SpecifyChannel(enum NewChannel {SSA, SMA, S-Band}) : EcTBoolean
SpecifyAntenna(enum NewAntenna {HighGain, Omni}) : EcTBoolean
SpecifyChannelAndAntenna(enum NewChannel, enum NewAntenna) : ECTBoo|

ConfigurationSnapshotRequest(RWCString* filename) : EcTB
ReadConfigurationSnapshot(RWCString* filename) : ECTBool
Shutdown() : EcTBoolean
FoGnRmsTransmitProxy()
~FoGnRmsTransmitProxy()

y {Active, Backup})

,CmdFop) : EcTt

oolean
lean

oolean

ean

FrGrSoftware

myDbld
myScld

RWCString
: RWCString
myState
myRmsAddress

:enum
+ Addreiss*

Stop() :EcTint

FrGrRTContact

- myEoutMgr
- myNoutMgr
- myDmsAddress

: FrGrEoutMgr
+ FrGrNoutMgr

: Address*

MakeRmsAddress()
MakeDmsAddress()

+

Stop() :EcTint
Snap() :EcTint
+ Reconfig(RWCString

+ o4+

+ Config) :EcTint

ChangeState(RWCString State)

: EcTint
: EcTInt
L EcTInt

configParam) + EcTint

+ Config(RWCString EoutFile, RWCString NoutFile)

+ EcTing

FrGrRemProcess

- myDbid
- myScld :RWCSL
- myState :enum
- myRmsAddress
- myRemPid

- myReminPid :
- myDataArchiver

- myProcessName

- mySnapFilename

: RWCString

tring

Address*

:EcTint

EcTint
FrGrDataArchiver*
: RWCString
: RWCString

- y Yy
- myFrGrRTContact

: FrGrRTContact*

FrGrDataArchiver

starts

+ StartRemProcess()
+ StopRcmProcess()
SnapRemProcess()

: EcTint
: EcTInt
EcTint

+

ConfigRcmProcess|

String config)

of
SnapConfigRemProcess(RWCString ConfigFile)

() : EcTInt

:EcTint
EcTint

- myDbid
- myscld

: RWCString
: RWCString
- myPid :EcTint
- myRMSConfigProxy
myRmsAddress

Address*

: FACfAMSConfigProxy*

+ stan()
+ Config)
+ Stop()

:EcTint
: EcTInt
L EcTInt

FdCIRMSConfigProxy

+

+

send(ListenAddr, DataTypeid)
receive() :int

tint

FoGnRmsRemProxy

: RWCollectable
: EcTint

myMessage
myMsgDestination

GetMessage(EcTVoid)
Shutdown(EcTVoid)

: RWCollectable *
: EcTBoolean

EdosConfig(FgTRemStateType . FgTl
RemState(FgTRemStateType theState)

ArchiveState(FgTRcmArchiveStateType theState)
C (!

String)

(RWCString

InitConfig(FgTRcmState Type theState, RWCString t
EcTint theDmsAdd r, ECTint theParamServerAddr)

NccConfig(EcTChar theSourcelD, EcTChar theDestID, RWCString theUserID, RWCString

theTdrsID , RWCString theSupportiD)
SetControlAuthority(RWCString *theControliD)

Type
: ECTVoid
: EcTVoid
: EcTVoid
: EcTVoid
heScid, RWCString theDbid,

: EcTVoid

: EcTVold

: EcTVoid

: EcTVold

3-17

Figure 3.2.3-4. RMS String Manager Component FrGrRTContact Object Model

305-CD-043-001

81-€

T00-E0-AD-S0E

FrGrRmsFuiRequestProxy

myRmsAddress: Address*

GenStrDelete(RWCString Userld, RWCString Wksld, EcTInt StringlHETVoid
GenRTServReq(Scld, Dbld, RTSid, Mode, Userld, WksidgcTVoid

GenBkupServReq(EcTInt Stringld, EcTInt RTSid, RWCString Userld, RWCString Wk&d)l
GenStringFailOverReq(Userld, Wksld, FailedStringld, FailedRTSid, BackupRT:Sa,TVoid

GenAdjustLimitReq(Userld, Wksld, Stringld, Parameterld, Type, ParamVallgTVoid

GenCommandPriviledgeReq(RWCString Userld, RWCString Wksld, EcTInt Stringid)r Voi
GenGroundControlPriviledgeReq(RWCString Userld, RWCString Wksld, EcTHYTVoid

GenSimulationServReq(Mode, Scid, Dbid, RTSid, Userld, WksI&cTVoid
GenStringConnectReq(Stringld, Userld, Wksld, TimType, myUserTypegTVoid
GenStringDisconnectReq(EcTInt Stringld, RWCString Userld, RWCString WksE§TVoid

Void

see Figu&3.2.3-7,8,9,10,11,12,13

FrGrRequest

creates

- myXDR: XDR
T
+
+
+
= BackupStringld)
+
FrGrReplayRequestProxy TImType, Setld)
- myRmsAddress: Address* +
- . +
myXDR : XDR Stringld)
+ Initialize() : EcTInt *
+ GenStrDelete(RWCString Originator, RWCString Userld, RWCString Wksld, EcTHafl|Void *
Stringld) + ens
+ GenReplayReq(Originator, Scld, Dbld, RTSid, Userld, Wksld, DataTyp$TVoid + Initialize() : EcTInt
sends sends
Fremvessage see Figure 3.2.3-6
received by
: B
see Figure 3.2.3-1
= FrGrRequestHandler
- myRequestQueue: RWSet*
FdEvEventl.ogger - myEventLogger: FdEvEventLogger*
=] + CheckQueue(): FrGrRequest*
+ Initialize(FrGrController* Controller)EcTInt
FrGrController + sendStatus(RWCollectable* sentRequestEcTInt
+ receiveRequest(RWCollectable* newRequestEcTInt

see Figure 3.2.3-1
updates

RWSet

Figure 3.2.3-5. RMS String Manager Component FrGrRequestHandler Object Model

The FrGrRequestHandler object is responsible for receiving a Message object from FUI, DMS, or
the Analysis Subsystem, instantiating the appropriate Request object, placing the Request object
in aqueue, retrieving a Request object from the queue, and returning a status when the request has
been processed. If necessary, it can generate an event via the FAEvEventLogger object. The
FrGrReplayRequestProxy object will reside in a service user's process. For clarity, it isplaced in
this object model. This proxy object can send a Replay Service Request and a String Delete
Request. The FrGrRmsFuiRequestProxy object can send requests to create strings, modify string
configurations, failover strings, delete strings, connect to strings, disconnect from strings, and take
the Ground Control or Command Authority privilege on a particular string. Figure 3.2.3-6
illustrates the Message objects that the FrGrReplayRequestProxy and the
FrGrRmsFuiRequestProxy objects will send. When the FrGrRequestHandler object receives the
Message object, it instantiates the appropriate Request object and placesit in aqueue. The queue
is implemented viaa RWSet. When requested by the FrGrController object, a Request object is
retrieved from the queue and returned to the Controller. Figures 3.2.3-7,8,9,10,11,12,13 illustrate,
in more detail, the Request objects.

The FrGrMessage object is derived off of the RWCallectable object. Thisis necessary in order to
inherit needed operations for flattening objects to a stream. When an object is passed between
processes, it is flattened to a stream. FrGrMessage, FrGrStringAccessMessage, and
FrGrStringCreateM essage are abstract classes containing attributes that derived objects will
inherit. When the FrGrRequestHandler receives any of the other derived objects, it instantiates a
particular Request object. These Request objects are shown in Figures 3.2.3-7,8,9,10,11,12,13.
For example, when the FrGrRequestHandler receives the FrGrStringFailoverRegMessage, it
instantiates a FrGrStringFailoverRequest object and placesit in aqueue. The only operations that
the Message objects contain are "set" and "get" operations.

The FrGrStringA ccessRequest object is derived off of the FrGrRequest object. FrGrRequest is an
abstract class that contains attributes and an Execute operation that derived classes will inherit.
FrGrStringAccessRequest contains additional attributes and a FindString operation that derived
objects will inherit. The FrGrStringConnectRequest object contains attributes and operations
necessary for connecting a user to an existing string. It will create telemetry processes on a
workstation for telemetry decommutation. The FrGrStringDisconnectRequest contains attributes
and operations necessary for disconnecting a user from astring. It will delete telemetry processes
on aworkstation. The FrGrSnapshotCompNotif object is utilized when a configuration snapshot
isretrieved from RTStelemetry processes. When a user connects, the FrGrStringConnectRequest
object isforwarded from the WS RMS to the RTSRMS. The RTS RMS requests a configuration
snapshot from atelemetry process and the configuration snapshot information is written to afile
on the requesting workstation. The RTS RMS returns with the FrGrSnapshotCompNotif object.
The FrGrStringConnectRequest notifies the FrGrSnapshotCompNotif object to execute. The
FrGrSnapshotCompNotif object will create and configure the telemetry processes using the
configuration snapshot file.

The FrGrBackupServiceRequest object is derived off of the FrGrRequest object. FrGrRequest is
an abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrBackupServiceRequest object contains attributes and operations necessary for creating a
backup Real-Time Operational String. It will request configuration snapshots from active real-
time processes and configure a Real-Time Operational String using the configuration snapshot
files that were created. A backup Real-Time Operational String is necessary for failing over an
active string when afailure occurs.

3-19 305-CD-043-001

0c-€

RWCollectable

FrGrMessage

- myOriginator : RWString
- myWksld : RWCSfing
- myUserld : RWCS}ring

5

FrGrStringAccessMessage

~ myStringld : RWCStrin

FrGrStringFailoverReqMessage

myFailedStringld : EcTInt

myFailedRTSid : RWCString|
myBackupStringld : EcTInt
myBackupRTSid : RWCString

g

T00-E0-AD-S0E

FrGrStrConnectReqMessage

FrGr

~ myTimType : RWCString
- myUserType : RWCStrin

myParameterld : EcTint
myType : RWCString
myParamValue : EcTint
myTImType : EcTint

- mySetid : EcTint

- myRTSid : EcTint

FIGrStrDeleteMessage

FrGrCmdPrivRegMessage

FrGrstrDisconnectReqMessage

FrGrGndcCtriPrivReqMessage

FIGrStringCreateMessage

~ myRTSid : RWCString

play

~ myScld : RWCString
- myDbld : RWCString|
- myMode : RWCStrin

~ myScld : RWCString
- myDbld : RWCString
- myMode : RWCString

myScld : RWCString
myDbld : RWCString
myTImType : RWCString

Figure 3.2.3-6. RMS String Manager Component FrGrMessage Object Model

T¢-€

T00-E0-AD-S0E

FrGrRequest

- myOriginator: RWCString
- myCurrentString: FrGrString*

+ execute(FrGrController* ControllerEcT|n

=]
FrGrStringAccessRequest
- myStringld: int
- myUserld: RWCString
- myWksld: int
+ findString(FrGrStringTable* PassedStringTable, int PassedStringHbp

String*

FrGrSnapshotCompNotif

myStringID: EcTInt
myTImConfigFilename RWCString
myTImType: enum

execute(FrGrController* ControllerEcTInt
findString(RWSet* PassedStringTablefrG

FrGrStringConnectRequest

myTImType: enum
myUserType: enum

+ W

createParamServer() EcTInt
createTelemetry(} int

findTIm() : FrGrTelemetry*
addUser(): int

addMirroredWS(} int
addTailoredWS() int
execute(FrGrController* Controller)nt

FrGrStringDisconnectRequest

+

removeParamServer() EcTInt
removeUser(): int
removeUserStation() int
removeAllTIm(): int
execute(FrGrController* Controllerjnt

Figure 3.2.3-7. RMS String Manager Component FrGrStringAccessRequest Object

String*

FrGrRequest

- myOriginator : RWCString
- myCurrentString : FrGrString*

+ execute(FrGrController* Controller) : EcTiInt

FrGrBackupServiceRequest

- myStringld sint

- myRTSid sint

- myUserld : RWCString

- myWksld : RWCString

- myDiagnosticTImConfigFilename : RWCString
- myHStimConfigFilename : RWCString

- myFopCmdConfigFilename : RWCString

- myRcmConfigFilename : RWCString

- myHKTImConfigFilename : RWCString

- mySbTImConfigFilename : RWCString

- myFormatCmdConfigFilename : RWCString

- myUplinkCmdConfigFilename : RWCString

- myEoutMgrRecmConfigFilename : RWCString
- myNoutMgrRcmConfigFilename : RWCString

- myScld : RWCString
- myMode : RWCString
- myCald : RWCString

- myCaWsld : RWCString
- myGecld : RWCString
- myGcwsld : RWCString

+ createParamServer(FrGrStrManResMonlF* PassedStrManResMonlF)

+ createTIm(FrGrStrManResMonlF* PassedStrManResMonlF) sint

+ createCommand(FrGrStrManResMonlF* PassedStrManResMonlF) int

+ createRcm(FrGrStrManResMonlF* PassedStrManResMonlF) int

+ findString(FrGrStringTable* PassedStringTable, int PassedStringID) : FrGrString*
+ makeString() : FrGrString*

+ execute(FrGrController* Controller) vint

Figure 3.2.3-8. RMS String Manager Component FrGrBackupServiceRequest Object Model

3-22 305-CD-043-001

€€

T00-E0-AD-S0E

F

FrGrRequest

- myOriginator : RWCString
- myCurrentString : FrGrString*

+ execute(FrGrController* Controller) : EcTIpt

FrGrStringFailoverRequest

- myFailedRTSid : EcTInt

- myBackupRTSid : EcTInt
- myUserld : RWCString

- myWksld : RWCString

- myBackupStringld : EcTInt
- myActionFlag : RWCString
- myFailedStringld : EcTInt

execute(FrGrController* Controller) : EcTInt
activateCommand() : EcTInt
activateRTContact() : EcTint
activateTelemetry() : EcTInt

ActivateGSC() : EcTint

findTIm() : FrGrTelemetry*
deactivateCommand() : EcTint
deactivateRTContact() : EcTInt
DeactivateTelemetry() : EcTInt
DeactivateGSC() : EcTInt
findString(FrGrStringTable* PassedStringTable, int PassedStringID) : FrGr$tring*

H o HH O+

Figure 3.2.3-9. RMS String Manager Component FrGrStringFailoverRequest Object Model

The FrGrStringFailoverRequest object is derived off of the FrGrRequest object. FrGrRequest is
an abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrStringFailoverRequest object contains attributes and operations necessary for
deactivating afailed Real-Time Operational String and activating a backup Real-Time Operational
String.

The FrGrGroundControl Request object is derived off of the FrGrRequest object. FrGrRequest is
an abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrGroundControlReguest is an abstract class that Configuration Change Requests will be
derived from. The FrGrAdjustLimitRequest is an example of a single Configuration Change
Request. The FrGrAdjustLimitRequest object contains attributes and operations necessary for
forwarding alimit adjustment to atelemetry process. If thelimit changeisfor the telemetry on the
RTS, any mirrored workstations will receive the FrGrAdjustLimitRequest after the WS RMS
forwards the Request to the RTS RMS. All telemetry Configuration Change Requests will be
handled in the same way. The information that is sent to the processes will be different.
Command, RCM, and the Ground Script Controller will be handled in a similar way. The
information forwarded to the processes will be different and after the WS RMS forwards the
Configuration Change Request to the RTS RMS, it will not be sent back to any mirrored
workstations. This is not necessary since Command, RCM, and Ground Script Controller
processes do not reside on the workstation.

The FrGrPrivilegeRequest object is derived off of the FrGrRequest object. FrGrRequest is an
abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrPrivilegeRequest is an abstract class that the FrGrCommandPrivilegeRequest and the
FrGrGroundControl PrivilegeRequest objects are derived from. It contains attributes and
operations needed by the FrGrGroundControl PrivilegeRequest and the
FrGrCommandPrivilegeRequest. The FrGrCommandPrivilegeRequest object contains attributes
and operations necessary for changing command authority on a Real-time or Simulation String.
Only a user with command authority is capable of commanding a particular spacecraft. The
FrGrGroundControl PrivilegeRequest object contains attributes and operations necessary for
changing ground control authority on a Real-time, Simulation, or Shared String. Only a user with
ground control authority is capable of making configuration changesto string processes that reside
onthe RTS.

The FrGrServiceRequest object is derived off of the FrGrRequest object. FrGrRequest is an
abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrServiceRequest is an abstract class that the FrGrRealtimeServiceRequest,
FrGrSimulationServiceRequest, and the FrGrReplay ServiceRequest objects are derived from. It
contains attributes and a MakeString operation needed by the derived Requests. The
FrGrRealtimeServiceRequest object contains all functionality needed for creation of a Real-Time
String. The FrGrSimulationServiceRequest object contains all functionality needed for creation of
a Simulation String. The FrGrReplay ServiceRequest object contains all functionality needed for
creation of a Dedicated Replay or Shared Replay String.

The FrGrStringDel eteRequest object is derived off of the FrGrRequest object. FrGrRequest isan
abstract class that contains attributes and an Execute operation that derived classes will inherit.
The FrGrStringDel eteRequest object contains all functionality needed for deletion of a string and
its associated processes.

3-24 305-CD-043-001

FrGrRequest

- myOriginator : RWCString
- myCurrentString : FrGrString*

+ execute(FrGrController* Controller) T EcTiIng

FrGrGroundControlRequest

- mySendFlag sint

- mysStringld int

- myUserld : RWCString
myWksld : RWCString

+ findBackupString(RWSet* PassedStringTable, int passedStringID) : FrGrStfing*
+ findString(RWSet* PassedStringTable, int PassedStringID) : FrGrString*
FrGrAdjustLimitRequest

- myType :RWCString

- myParameterld int

- mySetld :int

- myValue :double

- myTelemetryType : RWCString

+ execute(FrGrController* Controller) vint

+ configTim() sint

+ sendConfigChange(FoGnRmsWsRmsIF* PassedFoGnRmsWsRmsIF) sint

Figure 3.2.3-10. RMS String Manager Component FrGrAdjustLimitRequest Object Model

3-25

305-CD-043-001

9¢-€

T00-E0-AD-S0E

FrGrRequest

- myOriginator : RWCString
- myCurrentString : FrGrString*

+ execute(FrGrController* Controller) : EcTI

&=
FrGrPriviledgeRequest
- myStringld :int
- myUserld : RWCString
myWksld : RWCString
+ findString(RWSet* PassedStringTable, int PassedStringID) : FrGrString*
+ findBackupString(RWSet* PassedStringTable, int passedStringID) : FrGr$tring*
& =]
FrGrCommandPriviledgeRequest FrGrGroundControlPriviledgeRequest

+ changeCAid(FrGrStrManResMon* PassedFrGrStrManResMonlF) int + changeGCid(FrGrStrManResMonlF* PassedFrGrStrManResMonlF) int
+ checkCAid(FoGnRmsCsmsIF* PassedFoGnRmsCsmsIF) :int + checkGCid(FoGnRmsCsmsIF* PassedFoGnRmsCsmsIF) :int
+ execute(FrGrController* Controller) :int + execute(FrGrController* Controller) :int

Figure 3.2.3-11. RMS String Manager Component FrGrPrivilegeRequest Object Model

LC-€

T00-E0-AD-S0E

FrGrRequest

myOriginator: RWCString
myCurrentString: FrGrString*

+

execute(FrGrController* Controller)EcT|nt

B
FrGrServiceRequest

- mySCid : RWCStiing
- myDBid: RWCString
- myRTSid: RWCString
- myUserld: RWCString
- myWksld : RWCString

+ makeString(): FrGrString*

-

FrGrRealtimeServiceRequest

FrGrSimulationServiceRequest

myMonitorRts: RWCString
myMode : RWCString

myMode

HoH O+

execute(FrGrController* Controller)int

findString(RWSet* requestStringTableFrGrString*

makeString(): FrGrString*

createTIm(FrGrReqManResMonIF* PassedReqManResMonliRt
createRcm(FrGrRegManResMonIF* PassedRegManResMonliRy
createGSC(): EcTInt

createParamServer() EcTInt
createCommand(FrGrRegManResMonIF* PassedRegManResMonif)

W+ o+

execute(FrGrController* Controller)EcTInt
findString(RWSet* PassedStringTableJFrG
makeString(): EcTInt

createTIm(): EcTInt

createGSC(): EcTInt
createParamServer() EcTInt
createCommand(): EcTInt

String*

|

FrGrReplayServiceRequest

myDataType: RWCString

4O

makeString(): FrGrString*
createParamServer() EcTInt
createReplayTIm(): int
execute(FrGrController* Controller)int

Figure 3.2.3-12. RMS String Manager Component FrGrServiceRequest Object Model

8¢-¢

T00-E0-AD-S0E

FrGrRequest

- myOriginator: RWCString
- myCurrentString: FrGrString*

+ execute(FrGrController* ControllerEcT|nt

FrGrStringDeleteRequest

- myStringld: EcTInt

- myAllowance: RWCString = Cancel
- myUserld: RWCString

- myWksld: RWCString

execute(FrGrController* Controller)nt

findString(RWSet* PassedStringTable, int PassedStringIBEx)GrString*
deleteCmd(FrGrStrManResMonlF* StrManResMonIEETInt
deleteGsc(FrGrStrManResMonlF* StrManResMonlEELTInt
deleteParamServer(RWCString Host,FrGrStrManResMonlF* StrManResMoBtH)Int
deleteRcm(FrGrStrManResMonlF* StrManResMonlEETInt

deleteTIm(RWCString Host, FrGrStrManResMonlF* StrManResMofET Int
removeAll(FrGrStrManResMonlF* PassedStrManResMonlF, RWCString PassedHdsd@nt
removeString(RWSet* PassedStringTabldicTInt

e o

Figure 3.2.3-13. RMS String Manager Component FrGrStringDeleteRequest Object Model

6¢-€

T00-E0-AD-S0E

==

FrGrRequest

- myOriginator : RWCString
- myCurrentString : FrGrString*

+ execute(FrGrController* Controller) : EcTInt

==

H

FrGrTableUpdateRequest

FrGrStringStateUpdateRequest

- myTableSubset : RWSet

- myNewState : RWCString
- myStringld : EcTInt

+ execute(FrGrController* Controller) : EcTInt

+ findString(RWSet* PassedStringTable, int PassedStringID) : FrGr

+ execute(FrGrController* Controller) : EcTInt

String*

Figure 3.2.3-14. RMS String Manager Component FrGrTableUpdateRequest Object Model

The FrGrTableUpdateRequest and FrGrStringStateUpdateRequest objects are derived off of the
FrGrRequest object. FrGrRequest is an abstract class that contains attributes and an Execute
operation that derived classes will inherit. The FrGrTableUpdateRequest object contains all
functionality needed for updating a String Table with a Table Subset. When a RTS RMS String
Tableis modified, it is multicasted to every WS RM S viathe FrGrTableUpdateRequest. The WS
RMS String Table is an inclusive set of al of the RTS RMS String Tables. The WS RMS will
receive the FrGrTableUpdateRequest and include the myTableSubset into its WS RMS String
Table. When aRTSfailsand isincommunicable, its strings are failed over by the user. When the
RTS RMS on the backup RTS receives the String Failover Request, it will check the Request to
determine if the active RTS is communicable. If not, the RTS RMS will multicast to every WS
RMS aFrGrStringStateUpdateRequest. The WS RM S will receive the Request and update its WS
RMS String Table by changing the state of the failed RTS String from Active to Inactive.

3.2.4 RMS String Manager Component Dynamic Model
Thefollowing arethe RM S String Manager Component scenarioswhich are defined in this section.
+ Initialization of the RM S residing on the Workstation
+ Initialization of the RM S residing on the Real-Time Server
« Request for a Real-Time Service Arrives on the Workstation
« Request for a Real-Time Service Arrives on the Real-Time Server
« Request for aMirrored String Connection Arrives on the Workstation
« Request for aMirrored String Connection Arrives on the Real-Time Server
« Request for Command Authority Arrives on the Workstation
« Request for Command Authority Arrives on the Real-Time Server
« Request for Telemetry Configuration Change Arrives on the Workstation
« Request for Telemetry Configuration Change Arrives on the Real-Time Server
« Request for Dedicated Replay Telemetry Arrives on the Workstation from DMS
« Request for Dedicated Replay Telemetry Arrives on the Workstation from Analysis
« Request for a String Failover Arrives on the Workstation
« Request for String Deactivation Arrives on the Real-Time Server
« Request for String Activation Arrives on the Real-Time Server

3.2.4.1 Initialization of RMS Residing on the Workstation Scenario

3.2.4.1.1 Initialization of RMS Residing on the Workstation Abstract

The purpose of the Initialization of RM S Residing on the Workstation scenario is to describe the
process by which the RMSisinitialized upon system startup of an EOC User Workstation.

3.2.4.1.2 Initialization of RMS Residing on the Workstation Summary Information

Interfaces:
SCDO/CSS Name Server

3-30 305-CD-043-001

Data Management Subsystem

Parameter Server Subsystem
Stimulus:

The RMS software is executed on an EOC Workstation.
Desired Response:

The RMS software will determine that its host is an EOC Workstation and instantiate the
objects that comprise the Workstation RMS object model in order to function in the
necessary role.

Pre-Conditions:

An operational database will need to be established, complete and available for the
Workstation RM S process.

Post-Conditions:

Users will be able to view ground telemetry pages that display RMS provided information
about available logical strings.

Users will be able to issue service requests to establish logical strings for monitoring a Real-
Time contact, simulation of areal-time contact, or replay of historical telemetry.

Users will be able to connect to established real-time strings for monitoring of the real-time
contact in mirrored or tailored telemetry processing mode.

3.2.4.1.3 Scenario Description

The RMS Controller's Initialization operation isinvoked. The FAEvVEventL ogger object is created
to allow RMS to send events to DMS. The CSMS IF object is created and the Controller
determines, viathe CSM S nameserver, whether it is on the RTS or on the WS. Upon determining
that its host is aworkstation, it creates the FdDsFileAccessor object and retrieves an Operational
DB. The FrGrRmsWsRmsl F object will be created and will allow the WS RM S to receive objects
from the RTS RMS. It will then create the Parameter Server process and register it with the
nameserver. The FoPsClientlF object is created to allow the RMS to communicate with the
Parameter Server. A RWSet object that will contain the IF objects for each RTS RMS will be
created. In this particular scenario there are two RT Servers. Therefore, two
FrGrWsRmsRequestProxy objects are created and added to the RWSet. The String Table is
constructed and a FrGrTableUpdateRequest object is constructed to query each RTS RMS for its
String Table objects. The FrGrTableUpdateRequest object is constructed and sent to the RTS
RMS viathe appropriate FrGrWsRmsRequestProxy object. The RTS RMSwill send the Request
back to the WS RM S with its String Table included. The String Table objects are retrieved from
the Request and added to the WS RM S String Table. The String Table Update Request Statusis
received from the RTSRM S and the processisrepeated in order to retrieve the second RTSRMS's
String Table. Once the workstation string table is constructed, the Parameter Server is updated
with the new string table parameters. The FrGrRequestHandler object is constructed in order to
receive Requests from FUI, Analysis, and DMS.

3-31 305-CD-043-001

3.2.4.1.4 State Transition Description

3.2.4.2 Initialization of RMS Residing on the Real-Time Server Scenario

3.2.4.2.1 Initialization of RMS Residing on the Real-Time Server Abstract

The purpose of the Initialization of RMS Residing on the Real-Time Server scenario isto describe
the process by which the RMSisinitialized upon system startup of a Real-Time Server.

3.2.4.2.2 Initialization of RMS Residing on the Real-Time Server Summary
Information
Interfaces:

CSMS Name Server

Data Management Subsystem

Parameter Server Subsystem

Telemetry Subsystem

Command Subsystem

Real-Time Contact Management Subsystem

FUI Ground Script Controller
Stimulus:

The RMS software is executed on a Real-Time Server.
Desired Response:

The RM S software will determinethat its host isa Real-Time Server and instantiate the objects
that make up the RTS RM S object model in order to function in the necessary role.

Pre-Conditions:

An operationa database will need to be established, complete and available for the RTSRMS
process.

Post-Conditions:

Users will be able to issue service requests to establish logical strings for monitoring a real-
time contact, simulation of areal-time contact, or replay of historical telemetry.

Users will be able to connect to established real-time strings for monitoring of the real-time
contact in mirrored or tailored telemetry processing mode.

3.2.4.2.3 Scenario Description

The RM S Controller's Initialization operation isinvoked. The FAEVEventL ogger object is created
in order for RMS to send events to DMS. The CSMS IF object is created and the Controller
determines whether it is on the RTS or on the WS. Upon determining that its host is a RTS, it
creates the FdDsFileA ccessor object and retrieves an Operational DB. The FrGrRmsWsRmslF

3-32 305-CD-043-001

€e-e

T00-E0-AD-S0E

FrGrController

FrGrTableUpdateRequest FAEVEventLogger FoPsClientlF FdDsFileAccessor FrGrWsRmsRequestProxy FrGrWsRmsRequestProxy prGrRmsWsRmsIF RWSet FrGrRequestHandler RWSet FoGnCsmsIF
reateFdEVH LoggeF———>>
dreateFoGnCsmslF >>
guer verForRole >>1
reateFdDsFilgAccessor >4
getOperatignalDB- >>|
<< turnOperationalDB
akeFrGrRmsWsRmsIFObject >>
1
createParameterServerProcess
gister with name sen >>1
reateFoPsClientlF
teFrGrWsRmsRequestProxySet >>
GetRTS" >
teFrGrWsRmsRequestiProxy >>
ddProkyToSet >>
eateFrGrWsRmsRequestPro: >>
ddProkyToSet >
egteStringTabl
—createRequest—>>
nTableUpdateRequest >
— - eiveTableUpdateRReq >>
—getStringObjects—>>
d$tringsToTabl
eiveTableUpdateR >>
ndTableppdateRequest >>
eiveTableUp q >
—getStringObjects—>>
d$tringsToTabl,
eiveTableUpdateReqt >>
dateP:
ereateFrGrRequestHandl >>i

Figure 3.2.4.1.4-1. Initialization of RMS Residing on the Workstation Event Trace

object is created in order to receive Requests from the RMS processes that reside on the
workstation. A RWSet collection class is created that will contain the Default Configuration
Request objects. A default configuration fileisrequested from the DM S and |oaded into the newly
created default configuration collection class. A String Table is created as well as the
FrGrStrManResMonProxy object. This object allows the RMS String Manager process to
communicate with the RMS Resource Monitor process. An iterator is created that will allow the
RMSto iterate over the Default Configuration Request objects. In this particular scenario the only
Default Configuration Request is a single FrGrRealtimeServiceRequest. Thisrequest is executed.
In doing so, a string object is made and added to the String Table. A FrGrTableUpdateRequest
object is created and multicasted to each WS RMS in order for their String Table to be updated
with the new String.

A FrGrParameterServer object is created in order for a Parameter Server process to be initialized.
In Figure 3.2.4.2.4-3, the FrGrParameter Server object can befound. The Parameter Server process
is created viathe FrGrParameterServer object. In Figure 3.2.4.2.4-1 the ParameterServer object is
added to the String and a Request is sent to the Resource Monitor to monitor the Parameter Server
process.

A FrGrTelemetry object is created that is representative of the telemetry processes responsible for
decommutation of the housekeeping, health& safety, standby, and diagnostic telemetry data. In
Figure 3.2.4.2.4-3, four corresponding telemetry process objects are created. These telemetry
process objects are representative of the processes used to decommutate housekeeping,
health& safety, standby and diagnostic telemetry. The FrGrDataArchiver objects are created when
the FrGrTelemetryProcess objects are created. An additional telemetry process object is created
that is representative of the state check Telemetry Process. A FrGrDataArchiver object will not be
created when this telemetry process object is created. The Request object notifies the
FrGrTelemetry object to configure. FrGrTelemetry will notify its corresponding
FrGrTelemetryProcess objects to start. |f the FrGrTelemetryProcess represents a decommutation
or dump process, the FrGrDataArchiver object is notified to start first. The data archiver process
is created and the FrGrTelemetryProcess object creates the decommutation or dump process.
Diagnostic telemetry will be decommutated via a dump telemetry process. Housekeeping,
Health& Safety, and Standby telemetry will be decommutated via a decommutation telemetry
process. |If the FrGrTelemetryProcess represents the state check process, the data archiver process
isnot created and only the state check processis created. After the data archiver, decommutation,
dump, and state check processes are created, the FrGrTelemetry object notifies each
FrGrTelemetryProcess object to Config. If the FrGrTelemetryProcess object is associated with a
FrGrDataArchiver object, the FrGrDataArchiver object will be notified by the
FrGrTelemetryProcess object to Config. Once the data archiver process is configured, the
decommutation and dump processes will be configured. In the case of configuring a state check
process, only the state check process is configured. There is no data archiver process associated
with the state check telemetry process. After all decommutation, diagnostic, state check, and data
archiver processes are configured, the FrGrRealtimeServiceRequest is notified that telemetry has
been configured. In Figure 3.2.4.2.4-1, the FrGrTelemetry object isadded to the string. TheRMS
Resource Monitor processis notified of the new Process IDs that it needs to monitor.

In Figure 3.2.4.2.4-2, a FrGrCommand object is created that is representative of the command
processes responsible for commanding the spacecraft. In Figure 3.2.4.2.4-4, three

3-34 305-CD-043-001

FrGrCommandProcess objects are created. These objects will be used to communicate with the
Transmit, Fop, and Format proxies. The Request object notifies FrGrCommand to configure.
FrGrCommand notifies each FrGrCommandProcess object to start. A Transmit Command process
is created and told the RM S address on the command line. The process will notify RMSthat it is
alive. Thisisrepeated for the Format and Fop Command processes. After all command processes
are started, the command object notifies the three FrGrCommandProcess objects to config. The
command processes are sent their configuration information. In Figure 3.2.4.2.4-2, the Request
object adds the FrGrCommand object to the string. The RMS Resource Monitor is notified of the
command Process IDs that it needs to monitor.

A FrGrRTContact object is created that is representative of the RCM processes responsible for
processing Nascom and EDOS data. In Figure 3.2.4.2.4-5, the FrGrRcmProcess objects are
created. The FrGrDataArchiver object iscreated when aFrGrRecmProcess object iscreated. These
objects will be used to communicate with the NoutMgr, EoutMgr, and DataArchiver proxies. The
Request object notifies FrGrRTContact to configure. FrGrRTContact notifies the first
FrGrRcmProcess to start. This FrGrRecmProcess object is representative of the NoutMgr RCM
process. The DataArchiver process is created and followed by creation of the NoutMgr process.
The FrGrRTContact object will then notify the FrGrRcmProcess object to configure. The
FrGrRcmProcess object will notify the FrGrDataArchiver object to configure. After the
DataArchiver process is configured, the NoutMgr process is configured. Thisis repeated for the
EoutMgr process. Onceall DataArchiver and RCM processes are configured, the Request object
isnotified. In Figure 3.2.4.2.4-2, the RTContact object is added to the string. The newly created
Process ID's are sent to the RM S Resource Monitor process in order for them to be monitored by
CSMS. The EinMgr and NinMgr process IDs are sent to Resource Monitor, but they are started
by their corresponding EoutMgr and NoutMgr processes.

The Request object will create the FrGrGroundScriptController object. In Figure 3.2.4.2.4-5, the
FrGrGroundScriptProcess object is notified to create a Ground Script Controller process. Oncethe
processis created, it is notified to configure. In Figure 3.2.4.2.4-2, the FrGrGroundScriptProcess
isadded to the string and the Ground Script Controller process PID is sent to the Resource Monitor
processin order for it to be monitored.

The FrGrRealtimeServiceRequest has completed processing and the FrGrController deletes the
Request. The Default Configuration Information is checked for additional Requests. No Requests
are found and the RTS RM S has been initialized.

3-35 305-CD-043-001

See Appropriate
Subsystem

) Configuration
FrGrController FdEVEventLogger FoGnCsmsIF FdD: a Y F RWSet RWSet oy q FrGrTablet q Page

ereateFdEvEvVentLoggers>]

DefaultConfigFil

create
Iterator

uonduosaq uonisuel] arIsS ¥'Zy¥'Z e

gToTabl

9g-€

lticastTablel

ddPsT¢

¢ sendPidMonitorRequest_|
ForPs CieateFrGrTelemetry.
T FdrAlTelemetryTypes

g

TelemetryCe

—addTImToString—3>{

¢ sendPidVonitorReques
ForHkDecom

¢sendPidMonitorRequest__|
ForHkDecomArchiver

¢sendPidMonitorRequest__|
ForH&SDecom

g_sendPidMonitorReques_|
ForH&SDecomArchiver

sendPidMonitorRequest
<= ForStandbyDecom |

sendPidMonitorRequest _|
[<<ForstandbyDecomArchiver

sendPidMonitorRequest
< ForDump 1

sendPidMonitorRequest
<= ForbumpArchiver |

sendPidMonitorRequest__|
< ForStateCheck

Figure 3.2.4.2.4-1. Initialization of RMS Residing on the Real-Time Server Event Trace (Part 1 of 2)

T00-E0-AD-S0E

LE-E

T00-E0-AD-S0E

FrGrController

noMore
Requests

initialization

RWSet

FdEVEventLogger FoGnCsmsiF FADSFi q y

RWSet

FrGrTablel

See Appropriate
bsystel

Configuration
Page

onfigC

mmandC

¢_sendPidMonitorRequest_|

ForTransmit

< sendPidMonitorReques

ForFormat

sendPidMonitorRequest__|
<<= ForFOP

—addCmdToString—3>

TC

onfigRTC

TContactCs

< sendPidMonitorRequest__|

forNoutMgr

sendPidMonitorRequest
<<= auest

forNinMgr

< sendPidMonitorRequest |

forNinMgrArchiver

sendPidMonitorRequest
<= oul

sendPidMonitorRequest
=" ForEinMgr =~

< sendPidMonitorRequest |

ForEinMgrArchiver

(addRTContactToString3>{

sendPidMonitorRequest_|
orGroundScriptProcess

Figure 3.2.4.2.4-2. Initialization of RMS Residing on the Real-Time Server Event Trace

(Part 2 of 2)

8e-€

T00-E0-AD-S0E

FrGrRealtimeServiceRequest ~ FrGrParameterServer FrGrTelemetry FrGrTelemetryProcess FtTITelemetryConfig FrGrDataArchiver FdCfRmsConfigProxy FrGrTelemetyProcess

——createParamServer—3>|
——startParamServer—>>
CreateFrGrTelemetry S
ForAllTelemetryTypes CreateDecom
ProcessObject >
FrGrTelemetryProcess
Ogjreecattsegan(IWb e (—————CreateDataArchiyerObject——>>1
Health&Safety, Diagnostic
and Standby Processes
eateStateCheckProcessObject >>
Config >>
StartHk
Telemetry >
repeat previous two events StartDataArchiver >>
for H&S, Diagnostic and
Standby Telemetry I<<—DataArchiverProgessCreated————
< HkTelemetry |
ProcessCreated
StartStateCheckTelemetry >>
<< StgteCheckTelemetry
Config: >>
Config >>1
——SendConfiginfo—=>
<&ConfiginfoReceived—
<&——ConfigInfoReceived——
SendConfiginfo———>>
<&—ConfigIinfoReceived—
<€&——DecomConfigured—— 9
repeat previous
two events for
i H&S, Diagnostic and
k«——T ¢ » Diag
elemetryConfigure Standby Telemetry

Figure 3.2.4.2.4-3. Initialization of RTS RMS - Parameter Server and Telemetry Subsystem Event Trace

6E-€

T00-E0-AD-S0E

FrGrRealtimeServiceRequest FrGrCol
—— CreateCommand ————>>
Config >>

mmand FrGrCommandProcess ~ FOGnRmsTransmitProxy

|- CreateTransmitProcessObject >

repeat previous event
for Format and FOP processes

———— StartTransmit ——————>>|
I<&— TransmitProcessCreated —

repeat previous two events
for the Format and FOP
processes

Config >>|

I<&—— CommandConfigured

<&—— TransmitConfigured

repeat previous two events
for the Format and FOP
processes

—— SendConfiginfo —=>{
<&~ ConfiginfoReceived —

Figure 3.2.4.2.4-4. Initialization of RTS RMS - Command Subsystem Event Trace

or-€

T00-E0-AD-S0E

FrGrRealtimeServiceRequest FrGrRTContact FrGrRcmProcess FoGnRmsRcmProxy —FrGrDataArchiver ~FdCfRmsConfigProxy — FrGrGroundScriptController FuCcGscProxy

—CreateRTContact———>>

——=CreateFrGrNoutMgF———>>

—————=CreateFrGrDatpArchiver——————>>
FrGrRcmProcess object
will be created for EoutMgr
Process

——=ConfigRTContact———>>

StartNoutMg! >>

———StartDataAchiveF——>>
[<<—PataArchiverPrpcessCreated———
I<<—NoutMgr Process Created—{

repeat previous two
events for EoutMgr Process

Config >>

Ci i
on >—SendConfig|nfo—}>
. X I<&ConfiginfoReceived
<&——ConfiginfolReceived———
——SendConfiginfo—>=>
I<<-ConfiginfoReceived—
I<<—NoutMgrConfigured——

repeat previous two
events for EoutMgr Process

I<<—~RTContactConfigured——
greateGroundScriptProcessObject >>
CreateGroundScriptProg >>
<< GroundScriptProcessCreateé
€onfigGroundScriptPro
SendConfiglnfo—=>>f
I<&—ConfigInfoReceived—
<< GroundScriptProcessCanfiguree

Figure 3.2.4.2.4-5. Initialization of RTS RMS - Real-Time Contact Management Subsystem and
Ground Script Controller Event Trace

3.2.4.3 Request for A Real-Time Service Arrives on the Workstation Scenario

3.2.4.3.1 Request for a Real-Time Service Arrives on the Workstation Abstract

The purpose of the Request for a Real-Time Service Arrives on the Workstation scenario is to
describe the process by which the Workstation RM S acts upon arequest for areal-time service.

3.2.4.3.2 Request for a Real-Time Service Arrives on the Workstation Summary
Information
Interfaces:
FOS User Interface Subsystem
SCDO
Stimulus:

The user wishing to create a Realtime String on the RTS, sends a RealtimeServiceRequest via
the FUI.

Desired Response:
The WS RMS software will forward the Request to the RTS RM S to create a real-time string
that includes all appropriate software associated with areal-time string.
Pre-Conditions:
An operational database has been established. The database will be used by string processes
to retrieve configuration information.
Post-Conditions:

Users will be able to connect to the string for monitoring of the real-time contact in mirrored
or tailored telemetry processing mode.

Userswill be able to request Ground Control Authority in order to change the configuration of
the string software processes located on the RTS and send Ground Control Message
Requests (GCMRYs) viathe RCM software.

Userswill be able to request Command Authority in order to send commands to the spacecraft
viathe string Ground Script Controller and Command processes.

EDOS CODA reports will be archived by DMS.
NASCOM blocks and EDOS Data Units (EDUSs) will be archived by DMS.

3.2.4.3.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrRealtimeServiceRequest
isreturned. The Controller invokes the FrGrRealtimeServiceRequest object's Execute operation.
It is then ensured that the request came from a valid Ground Controller and Ground Controller
workstation. Upon determining that the string does not already exist and a Dbld was supplied with
the Request, the FrGrRealtimeServiceRequest is passed to the RTS RMS. When the request has
been processed on the RTS a status is sent back to the FUI and the request is deleted.

3-41 305-CD-043-001

cv-€

T00-E0-AD-S0E

FrGrController
——CheckQueue——=>

l<&—returnRequest—

FrGrRequestHandler

GetRequest >
FromQueue

< tify FUiOfR t
|_notifyFuiOfReques
Completion >

deleteR¢

Figure 3.2.4.3.4-1. Request for a Real-Time Service Arrives on the Workstation Event Trace

RWSet

notifyReques{ToExecute

requestDoneExecuting

RWSet

l<&——findString
stringNotFound——=>

Dbid
present

FrGrRealtimeServiceRequest

checkUserld———>>
checkWksld———>>
I<<—userldIsValidGC
<<—WhksldIsValidGCws—

passThisRequestT]

<<—RtsRmsDoneExed

quest

FoGnRmsCsmslIF FrGrWsRmsRequestProxy

ORtSRMS——>>

utingRequest:

uondiosaq uonisuel] arIsS Y'EY'ZE

3.2.4.4 Request for Real-Time Service Arrives on the Real-Time Server Scenario

3.2.4.4.1 Request for a Real-Time Service Arrives on the Real-Time Server Abstract

The purpose of the Request for Real-Time Service Arrives on the Real-Time Server scenario isto
describe how the RTS RM S acts upon a user request for areal-time service that is forwarded from
aWorkstation RMS.

3.2.4.4.2 Request for a Real-Time Service Arrives on the Real-Time Server
Summary Information
Interfaces:
Data Management Subsystem
Parameter Server Subsystem
Telemetry Subsystem
Command Subsystem
Real-Time Contact Management Subsystem
FUI Ground Script Controller
Stimulus:

The RMS on the workstation forwards a FrGrRealtimeServiceRequest object to the RMS on
the RTSfor processing.

Desired Response:

The RTS RMS software will create a real-time string that includes all appropriate software
associated with areal-time string.

Pre-Conditions:

An operational database has been established. The database will be used by string processes
to retrieve configuration information.

Post-Conditions:

Telemetry processes will be configured for decommutation of housekeeping, health& safety,
standby, and dump telemetry data. The state check telemetry process will be started.

The Format, FOP, and Transmit Command processes will be configured.
The Ground Script Controller Process will be configured.

The RCM processes will be configured.

The Data Archiver processes will be configured.

The Parameter Server process will be created.

3.2.4.4.3 Scenario Description

The Controller checks the queue of the FrGrFrGrRmsWsRmslF object and a
FrGrRealtimeServiceRequest is returned. The Controller invokes the
FrGrRealtimeServiceRequest object's Execute operation. A FrGrRealtimeString is created and

3-43 305-CD-043-001

added to the String Table. A FrGrTableUpdateRequest object is created and multicasted to each
WS RMS in order for their String Table to be updated with the new String.

A FrGrParameterServer object is created in order for a Parameter Server process to be initialized.
In Figure 3.2.4.4.4-3, the FrGrParameter Server object can befound. The Parameter Server process
is created viathe FrGrParameterServer object. In Figure 3.2.4.4.4-1 the ParameterServer object is
added to the String and a Request is sent to the Resource Monitor to monitor the Parameter Server
process.

A FrGrTelemetry object is created that is representative of the telemetry processes responsible for
decommutation of the housekeeping, health& safety, standby, and diagnostic telemetry data. In
Figure 3.2.4.4.4-3, four corresponding telemetry process objects are created. These telemetry
process objects are representative of the processes used to decommutate housekeeping,
health& safety, standby and diagnostic telemetry. The FrGrDataArchiver objects are created when
the FrGrTelemetryProcess objects are created. An additional telemetry process object is created
that is representative of the state check Telemetry Process. A FrGrDataArchiver object will not be
created when this telemetry process object is created. The Request object notifies the
FrGrTelemetry object to configure. FrGrTelemetry will notify its corresponding
FrGrTelemetryProcess objects to start. |f the FrGrTelemetryProcess represents a decommutation
or dump process, the FrGrDataArchiver object is notified to start first. The data archiver process
is created and the FrGrTelemetryProcess object creates the decommutation or dump process.
Diagnostic telemetry will be decommutated via a dump telemetry process. Housekeeping,
Health& Safety, and Standby telemetry will be decommutated via a decommutation telemetry
process. |If the FrGrTelemetryProcess represents the state check process, the data archiver process
isnot created and only the state check processis created. After the data archiver, decommutation,
dump, and state check processes are created, the FrGrTelemetry object notifies each
FrGrTelemetryProcess object to Config. If the FrGrTelemetryProcess object is associated with a
FrGrDataArchiver object, the FrGrDataArchiver object will be notified by the
FrGrTelemetryProcess object to Config. Once the data archiver process is configured, the
decommutation and dump processes will be configured. In the case of configuring a state check
process, only the state check process is configured. There is no data archiver process associated
with the state check telemetry process. After all decommutation, diagnostic, state check, and data
archiver processes are configured, the FrGrRealtimeServiceRequest is notified that telemetry has
been configured. In Figure 3.2.4.4.4-1, the FrGrTelemetry object isadded to the string. TheRMS
Resource Monitor processis notified of the new Process IDs that it needs to monitor.

In Figure 3.2.4.4.4-2, a FrGrCommand object is created that is representative of the command
processes responsible for commanding the spacecraft. In Figure 3.2.4.4.4-4, three
FrGrCommandProcess objects are created. These objects will be used to communicate with the
Transmit, Fop, and Format proxies. The Request object notifies FrGrCommand to configure.
FrGrCommand notifies each FrGrCommandProcess object to start. A Transmit Command process
is created and told the RM S address on the command line. The process will notify RMSthat it is
alive. Thisisrepeated for the Format and Fop Command processes. After all command processes
are started, the command object notifies the three FrGrCommandProcess objects to config. The
command processes are sent their configuration information. In Figure 3.2.4.4.4-2, the Request
object adds the FrGrCommand object to the string. The RMS Resource Monitor is notified of the
command Process | Ds that it needs to monitor.

3-44 305-CD-043-001

A FrGrRTContact object is created that is representative of the RCM processes responsible for
processing Nascom and EDOS data. In Figure 3.2.4.4.4-5, the FrGrRcmProcess objects are
created. The FrGrDataArchiver object iscreated when aFrGrRecmProcess object iscreated. These
objectswill be used to communicate with the NoutMgr, EoutMgr, and DataArchiver proxies. The
Request object notifies FrGrRTContact to configure. FrGrRTContact notifies the first
FrGrRcmProcess to start. This FrGrRecmProcess object is representative of the NoutMgr RCM
process. The DataArchiver process is created and followed by creation of the NoutMgr process.
The FrGrRTContact object will then notify the FrGrRcmProcess object to configure. The
FrGrRcmProcess object will notify the FrGrDataArchiver object to configure. After the
DataArchiver process is configured, the NoutMgr process is configured. This s repeated for the
EoutMgr process. Onceall DataArchiver and RCM processes are configured, the Request object
isnotified. In Figure 3.2.4.4.4-2, the RTContact object is added to the string. The newly created
Process ID's are sent to the RM 'S Resource Monitor process in order for them to be monitored by
CSMS. The EinMgr and NinMgr process IDs are sent to Resource Monitor, but they are started
by their corresponding EoutMgr and NoutMgr processes.

The Request object will create the FrGrGroundScriptController object. In Figure 3.2.4.4.4-5, the
FrGrGroundScriptProcess object is notified to create a Ground Script Controller process. Oncethe
process is created, it is notified to configure. In Figure 3.2.4.4.4-2, the FrGrGroundScriptProcess
isadded to the string and the Ground Script Controller process PID is sent to the Resource Monitor
process in order for it to be monitored.

Once the FrGrRealtimeServiceRequest has completed processing, the FrGrController notifies the
WS RMS of the Request Status and the Request is del eted.

3-45 305-CD-043-001

ov-€

T00-E0-AD-S0E

See Appropriate
Subsystem
Configuration
Page
FrGrController FrGrRtsRmsRequestProxy FrGrRmsWsRmsIF RwSet RWSet FrGrStrManResMonProxy FrGrRealtimeServiceRequest FrGrRealtimeString FrGrTableUpdateRequest
heckQuet >>
| GetRequesty |
< tumRdquest FromQueue
otifyRequestToExecutt >>1 .
makeString———>>
[<&——ad{iStringToTabl
reateRefjuest >>
<< multicastTableUy t
createParamServer: —
tartParamServer >

uonduosaq uonisuel] arIsS ¥y¥'Z e

addPsToString——>>}

<_sendPileI:oor:g&;rRequest_ reateFrGrTelemetry >
RorAllTelemetryTypes

Config >>

<&————— 1 TelemetryConfigured:

addTImToString—>>{
< sendPidMonitorRequest___|
ForHkDecom

¢ sendPidMonitorRequest__|
ForHkDecomArchiver

< sendPidMonitorRequest___|
ForH&SDecom

< sendPidMonitorRequest___|
ForH&SDecomArchiver

sendPidMonitorRequest
< ForStandbyDecom — |

< sendPidMonitorRequest _|
ForStandbyDecomArchiver

< sendPidMonitorRequest
ForDump

< sendPidMonitorRequest
ForDumpArchiver

< sendPidMonitorRequest,
ForStateCheck

Figure 3.2.4.4.4-1. Request for a Real-Time Service Arrives on the Real-Time Server Event Trace
(Part 1 of 2)

VA7

See Appropriate

Subsystem
FrGrController FrGrRtsRmsRequestProxy FrGrRmsWsRmsIF RWSet RWSet FrGrStrManResMonProxy FrGrRealtimeServiceRequest FrGrRealtimeString FrGrTableUpdateRequest Cong%lg:mn
reateCommand >>
onfigCommand >
<&—————tCommandConfigured-
——addCmdToString—>>
s
«sendPigmggigggequest_
<_sendPid2/ll;Jr|'1:isJ';Request_
reateRTContact >>
onfigRTContact———————————>>
<&——tRTContactConfigured-
—addRTContactToString—>>
<_sendPif(;rr\/,I\‘o(;1lKﬁlll'gRrequest_
<_sendPi(fi(;\I/'I’<\J‘mirg$equest_
<< imhgrAraer
<_sendP'i:dohr/I£thlohg:equest_
<_sendPiglr;/:<éli1ri‘t&r;equest_
< oA
CreateGroundScriptProcessObjectt———>>
CreateGroundScriptProcess———————>>
k&—————————GrgundScriptProcessCreated:
ConfigGroundScriptProcess———m———>>f
k&————————GroyndScriptProcessConfigul
addGscToString—>>|
<< FerGrouncauiprasess]
<< questDoneExecuting:
notifyWsRmsOfRequestStatus—————>>
deleteRequest: >>

T00-E0-AD-S0E

Figure 3.2.4.4.4-2. Request for a Real-Time Service Arrives on the Real-Time Server Event Trace
(Part 2 of 2)

8r-€

T00-E0-AD-S0E

FrGrRealtimeServiceRequest

createParamServer ——>>1

startParamServer ——>>f

CreateFrGrTelem:
ForAllTelemetryT

FrGrParameterServer

btry
pes

FrGrTelemetry

—

CreateDecom

Fr&[fjec%smseqpﬁ’%cess
Objects will be
created for
Health&Safety, Diagnostic
and Standby Processes

FrGrTelemetryProcess

CreateDataArchi

FtTITelemetryConfig

Config

l<€&—————— TelemetryConfi

ured

StartHk

Telemetry

repeat previous two events
for H&S, Diagnostic and
Standby Telemetry

< l:'HkTeIemetry

rocessCreated

StartDataArcl

[<&——— DataArchiverPro

StartSy

Config

repeat previous

two events for
H&S, Diagnostic and
Standby Telemetry

I<&——— DecomConfigured

S|

Config

heckProcessObject

essCreated

tateCheckTelemetry

FrGrDataArchiver

erobject ————— >

FdCfRmsConfigProxy

FrGrTelemetyProcess

iver ———— ———>>

ateCheckTelemetry

<&—— ConfiginfoR

SendConfiginfo ———>>

<€&—— ConfiginfoReceived

ceived

Subsystem Event Trace

—— SendConfiginfo —>>|

<& ConfiginfoReceived —

Figure 3.2.4.4.4-3. Request for a Real-Time Service - Parameter Server and Telemetry

6v-€

T00-E0-AD-S0E

FrGrRealtimeServiceRequest FrGrCo
CreateCommand ————>>]
Config >>

mmand FrGrCommandProcess

I— CreateTransmitProcessObject >

repeat previous event
for Format and FOP processes

———— StartTransmit —————>>1
I<&— TransmitProcessCreated —

repeat previous two events
for the Format and FOP
processes

<&—— CommandConfigured

Config >>

I<&—— TransmitConfigured

repeat previous two events
for the Format and FOP
processes

FoGnRmsCmdIF

—— SendConfiginfo —>>
<&~ ConfiginfoReceived —|

Figure 3.2.4.4.4-4. Request for a Real-Time Service - Command Subsystem Event Trace

0S-€

T00-E0-AD-S0E

FrGrRealtimeServiceRequest FrGrRTContact FrGrRcmProcess FoGnRmsRcmProxy FrGrDataArchiver FdCfRmsConfigProxy FrGrGroundScriptController ~ FuCcGscProxy

—CreateRTContact———>>

reate ontac ——CreateFrGrNoutMgF———>>1

—————=CreateFrGrDataArchivefF—————>>
FrGrRcmProcess object
will be created for EoutMgr
Process

———-ConfigRTContact———=>

StartNoutMg >>f

[————=StartDataArchiver———>>
<<——DataArchiverProgessCreated———{
I<<—NoutMgr Process Created—

repeat previous two
events for EoutMgr Process

-Config >>

Confi
0 >>—SendConfigIm‘o—}>

I<€ConfiginfoReceived—
<&——ConfiginfoRgceived——— onfiginiorecetve
——SendConfiginfo——=>>

<€—ConfigInfoReceived—
<€&—~NoutMgrConfigured——

repeat previous two
events for EoutMgr Process

I<&—RTContactConfigured——
EreateGroundScriptProcessPbject >>
CreateGroundScriptProc >>1
<< GroundScriptProcessCreated
ConfigGroundScriptProc
——SendConfiginfo—=>
<< GroundScriptProcessConfigured [<<ConfiginfoReceived

Figure 3.2.4.4.4-5. Request for a Real-Time Service - Real-Time Contact Management
Subsystem and Ground Script Controller Event Trace

3.2.4.5 Request for a Mirrored String Connection Arrives on the Workstation
Scenario

3.2.4.5.1 Request for a Mirrored String Connection Arrives on the Workstation
Abstract
The purpose of the Request for aMirrored String Connection Arrives on the Workstation scenario

isto describe how the Workstation RM S acts upon a user request for amirrored connection to an
existing logical string.

3.2.4.5.2 Request for a Mirrored String Connection Arrives on the Workstation
Summary Information
Interfaces:
FOS User Interface Subsystem
Parameter Server Subsystem
Telemetry Subsystem
Stimulus:

The user, wishing to connect to a logical string and mirror that string's telemetry process
configuration on the RTS, sends a String Connect Request to the workstation RM S viathe
FUI.

Desired Response:

The RM S software will create atelemetry process on the WS with aconfiguration that mirrors
the corresponding telemetry process on the RTS.

Pre-Conditions:
A string has been created for the user to connect to.

An operational database has been established. The database will be used by string processes
to retrieve configuration information.

Post-Conditions:

The user will be able to monitor telemetry data using the same configuration as the RTS
Telemetry Subsystem processes.

3.2.4.5.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrStringConnectRequest is
returned. The Controller invokes the FrGrStringConnectRequest object's Execute operation. A
string search is peformed and the string is found. It is determined that the user is not already
connected. In Figure 3.2.4.5.4-2, the ParameterServer object iscreated. In Figure 3.2.4.5.4-1, the
ParameterServer object is added to the string. In Figure 3.2.4.5.4-2, the Parameter Server process
isstarted. Thisisfollowed by the creation of a FrGrTelemetry object and a FrGrTelemetryProcess
object. InFigure 3.2.4.5.4-1, the newly created FrGrTelemetry object is added to the string. The
FrGrStringConnectRequest is sent to the RTS RM S and the arrival of a Telemetry Configuration
Snapshot is awaited. Once the FrGrSnapshotCompNotif object is received, via the

3-51 305-CD-043-001

FrGrRmsWsRmslF object, it is notified to execute. A string search is performed and the
FrGrTelemetry object is retrieved from the string. The Notif object notifies the FrGrTelemetry
object to configure. In Figure 3.2.4.5.4-2, the FrGrTelemetry object will notify its corresponding
FrGrTelemetryProcess object to start. The FrGrTelemetryProcess object will createits processand
tell it the RM S address on the command line. The process will notify RMS that it isalive. Once
the processis created, the FrGrTelemetry object is notified. The FrGrTelemetry object will notify
the FrGrTelemetryProcess object to configure with the Snapshot File. The FrGrTelemetryProcess
object will send the snapshot file along with the other configuration information to the telemetry
process. Oncethetelemetry processis configured, the FrGrSnapshotCompNotif object is notified.
In Figure 3.2.4.5.4-1, the FrGrStringConnectRequest is notified that the FrGrSnapshotCompNotif
object has completed execution and the FrGrStringConnectRequest deletes the
FrGrSnapshotCompNotif object. The completion statusof the original FrGrStringConnectRequest
that was sent to the RTS RMS is received and the Controller is notified. FUI is notified of the
String Connect Request compl etion and the FrGrStringConnectRequest object is deleted.

3.2.4.5.4 State Transition Description

3.2.4.6 Request for a Mirrored String Connection Arrives on the Real-Time Server
Scenario

3.2.4.6.1 Request for aMirrored String Connection Arrives on the Real-Time Server
Abstract

The purpose of the Request for a Mirrored String Connection Arrives on the Real-Time Server
scenario isto describe how the RTS RM S acts upon arequest for amirrored string connection that
is forwarded from aworkstation RMS.

3.2.4.6.2 Request for aMirrored String Connection Arrives on the Real-Time Server
Summary Information
Interfaces:
Telemetry Subsystem
Stimulus:

The RMS on the workstation forwards a FrGrStringConnectRequest object to the RTS RMS
for processing.
Desired Response:

The RM S software will include the user as part of a string and request a configuration snapshot
from a specific telemetry process. A Snapshot Completion Notification will be sent back
to the WS RM S in order for the telemetry process on the WS to be configured in the same
way as the telemetry on the RTS.

Pre-Conditions:
A string has been created for the user to connect to.

An operational database has been established. The database will be used by string processes
to retrieve configuration information.

3-52 305-CD-043-001

€G-€

T00-E0-AD-S0E

FrGrController FrGrRequestHandler RWSet RWSet F q RWSet FrGrwsRmsRequestProxy see Fig 3.2.45.4-2
checkQueue ——3>
Get Request _s.
From Queue
[<€&—— receiveRequest
yReques{ToExecute
< findString
StringFound ———>>
Already
Con
Object >>
addParamServer
[TosSting —>
>
C iTelemetr} >>
|— AddObjectToString >
questlloRtsRms >>
ompletion ————3>
| getSnapShotComp
From Quee 2]
< ompletion
questToExecute >>
<< findString
" >
g
<< getTh
(<€ configTimWithFiles —
{— configComplete —>>{
< request]
>
q >>
<< nnectCompNotif
<< requestDs
notifyFuiOfRequest
— " Completion = —>]
q

Figure 3.2.4.5.4-1. Execution of String Connection Request on the Workstation Event Trace

FrGrSnapshotCompNotif

T00-E0-AD-S0E

FrGrSnapshotCompNotif FrGrStringConnectRequest ErGrParameterServer FrGrTelemetry FrGrTelemetryProcess FtTITelemetryConfig

I—createParameterServerObject=>>|

startParamServer———=>1

CreateMirroredTg

configTImWithFiles

2lemetry—— >
—CreateFrGrTelemetryProcess—>

see Fig 3.2.4.5.4-1

<& onfigComplete

>

SnapStartTImProcess——>>|

I<<——TImProcessCreated

————ConfigWithFile ———>>

I<&———DecomConfigured

SendConfiginfo———=>

I<<——DecomConfigured

Figure 3.2.4.5.4-2. Creation of Mirrored Telemetry Subsystem on the Workstation Event Trace

Post-Conditions:

The configuration snapshot has been taken and the RTS RMS is capable of processing other
requests from the WS RMSss.

3.2.4.6.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmslF and a FrGrStringConnectRequest is
returned. The Controller invokes the FrGrStringConnectRequest object's Execute operation.

A string searchisperformed and the string isfound. The user and workstation is added to the string
and a FrGrTableUpdateRequest object is created. This object is multicasted to each WS RMS in
order to updatethe WS RM S String Table. The appropriate FrGrTelemetry object isretrieved from
the string and the FrGrTelemetry object is notified to Snap. In Figure 3.2.4.6.4-2, the
corresponding FrGrTelemetryProcess object is then notified to send a Configuration Snapshot
Request to Telemetry. The file is created by the Telemetry subsystem and is stored on the WS
RMS under a predetermined path name. Once the Telemetry subsystem notifies the
FrGrTelemetryProcess object that the snapshot has been taken, the FrGrTelemetry object is
notified, followed by notification of the FrGrStringConnectRequest. In Figure 3.2.4.6.4-1, the
FrGrSnapshotCompNotif object is created and sent to the WS RMS. The
FrGrStringConnectRequest del etes the FrGrSnapshotCompNotif object and notifies the Controller
that it has finished execution. After the Controller notifies the WS RMS that the
StringConnectRequest has been processed, it deletes the FrGrStringConnectRequest.

3-55 305-CD-043-001

9G-€

T00-E0-AD-S0E

FrGrController RWSet FrGrTableUpdateRequest FrGrStringConnectRequest FrGrRealtimeString FrGrRmsWsRmsIF RWSet FrGrRtsRmsRequestProxy see next page FrGrSnapshotCompNotif
checkQueue >>
[From Gueue >
<< returnRequest
notifyRequestToExe¢ute ——— 0 90 >
<< indString
StringFound
AddUser ——>>
< Creata‘g&:}t&lggpdate _— AddMirroredWs —3>>f
MulticastTableUpdateRequest ———>>|
—— GetTImObject —>>
GetConfigSnapshot >>
<< configSnapped
createSnapshotCgmpNotifObject >>1
sendNotifToWs >>1
[<&—— sendThisPbjectToWs
deleteReguest >>1
<< requestDoneExec|iting
otifyWsRmsOfRequestCompletign >>1
deleteRequest +——m————————————— >

Figure 3.2.4.6.4-1. Execution of String Connection Request on the Real-Time Server Event Trace

uondiosaq uonisuel] arlsS ¥'9¥'Z'E

JAS

T00-E0-AD-S0E

FrGrStringConnectRequest FrGrTelemetry

—— GetConfigSnapshot —>>

<<—— ConfigSnapped

SnapDecom ————=>

<<—— DecomSnapped

FrGrTelemetryProcess FtTITelemetryConfig

——— SendSnapRequest —— >

<<—— ReceiveSnapCompletion

Figure 3.2.4.6.4-2. Creation of Telemetry Subsystem Configuration Snapshot
on the Real-Time Server Event Trace

3.2.7.4 Request for Command Authority Arrives on the Workstation Scenario

3.2.4.7.1 Request for Command Authority Arrives on the Workstation Abstract

The purpose of the Request for Command Authority Arrives on the Workstation scenario is to
describe how the workstation RM S acts upon a user request for command authority.

3.2.4.7.2 Request for Command Authority Arrives on the Workstation Summary
Information

Interfaces:
SCDO/CSS Authorization Service
FOS User Interface

Stimulus:

The user, wishing to send real-time commands to a spacecraft associated with a particular
string, sends a Command Privilege Request, via the user interface.

Desired Response:

The RMS software will determine if the user is eligible to receive the command authority
privilege, and , if so, will forward the Request to the RTS RMS where the Command
software will be notified of the new user with Command Authority.

Pre-Conditions:

A Real-Timeor Simulation String will be available for the user to request Command A uthority
on.

Post-Conditions:

The user with Command Authority will be able to send commands to a spacecraft on a
particular string.

3.2.4.7.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a
FrGrCommandPrivilegeRequest is returned. The Controller invokes the
CommandPrivilegeRequest object's Execute operation. A string search is performed and the string
isfound. Onceit isdetermined that the string found is not a backup string, the CSM S is requested
to validate the User and Workstation ID's as being valid for command authority. Validation is
complete and the FrGrCommandPrivilegeRequest object is forwarded to the RTS RMS. The
backup string is found and the same Request object is forwarded to the RTS RMS that is
responsible for the backup string. Once both RTS RMS's have finished processing the
CommandPrivilegeRequest, the FUI is notified and the FrGrCommandPrivilegeRequest object is
deleted.

3-58 305-CD-043-001

65-€

T00-E0-AD-S0E

FrGrController FrGrRequestHandler RWSet RWSet FrGrCommandPriviledgeRequest FoGnCsmslF FrGrWsRmsRequestProxy FrGrWsRmsRequestProxy
checkQueue >>
| Get Request >
From Queue
<< eturnRequest:
notifyRequestTdExecut >
=<4 findString
tringFound >>
—
StringlsNot
ABackup
L=
checkCAid >>
checkCAwsld———>
<< AidValid
<< AwsldValid
sendThisRequestToRtsRMs ——>>f
I<<——findBackupString
—BackupStringFound —>>|
sendTh|sRequestToBackupRtsRms——M >~
I<€<—RtsRmsDoneExecutingRequest:
<&——BackupRtsRmsDoneExecutingRequest:
<< requestDonelExecuting
notifyFuiOfRequest >
Completion
deleteReqyest >>i

Figure 3.2.4.7.4-1. Request for Command Authority Arrives on the Workstation Event Trace

uonduosaq uonisuel] arls . v¥'2'E

3.2.4.8 Request for Command Authority Arrives on the Real-Time Server Scenario

3.2.4.8.1 Request for Command Authority Arrives on the Real-Time Server
Abstract

The purpose of the Request for Command Authority Arrives on the Real-Time Server scenariois
to describe how a command authority change is sent to Command.

3.2.4.8.2 Request for Command Authority Arrives on the Real-Time Server
Summary Information

Interfaces:
Command Subsystem
Stimulus:

The RMS on the workstation forwards a FrGrCommandPrivilegeRequest object to the RTS
RMS for processing.

Desired Response:

The RMS software will notify the Command software of the new user with the Command
Authority privilege.

Pre-Conditions;

A Real-Timeor Simulation String will be available for the user to request Command A uthority
on.

Post-Conditions:

The Command software will be able to accept commands from a new user with the Command
Authority privilege.

3.2.4.8.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmsl F and a FrGrCommandPrivilegeRequest
is returned The Controller invokes the FrGrCommandPrivilegeRequest object's Execute
operation. A string search is performed and the string isfound. The string's CAid and CAwsID is
changed. The FrGrCommand object is retrieved from the string and the corresponding
FrGrCommandProcess object is notified of the new CAid and CAwsID. The
FrGrCommandProcess object sends thisinformation to the Command processit is associated with.
Once the Command processisreconfigured, the new Command Userstation ID issent tothe RMS
Resource Monitor Task in order for it to begin monitoring the new CA userstation and stop
monitoring the old CA userstation. A FrGrTableUpdateRequest is created and multicasted to each
WSRMSin order for the WS RM S String Tables to be updated. The Controller isnotified that the
Request has finished processing and the WS RMS that sent the Request is notified. Finally, the
Controller will delete the Request.

3-60 305-CD-043-001

19-€

T00-E0-AD-S0E

FrGrController RwSet FrGrTablel a FIGrC q 9 RWSet FrGrCommand FIGIC
checkQueue >
GetRequest
FromQueue —>]
<
q
fyRequestTdExecute
<< findString
— changeCAidToUserld —3>f
— changeCAwsIdToWsld —>>
f—— getCommandObject —>>f
notifyCe fiNewCAidAndCAwsID >>
fwdNewCAidAnd >
[~ CAwsiD
f >
g
f<&— reconfigComplete ——|
(<&~ reconfigComplete —
<< c igdOfNewCAidAndCAwsID
CreateTableUpdate sendNewCAidAndCAwsID >>
<— Request I

q

f—— multicastTableUpdateRequestToEachWS ——>>
<< requestDs
notifyWsRmsOfRequest ~)
Completion
q

Figure 3.2.4.8.4-1. Request for Command Authority Arrives on the Real-Time Server Event Trace

uondiosaq uonisuel] arlsS ¥'8Y'ZE

3.2.4.9 Request for Telemetry Configuration Change Arrives on the Workstation
Scenario

3.2.4.9.1 Request for Telemetry Configuration Change Arrives on the Workstation
Abstract

The purpose of the Request for Telemetry Configuration Change Arrives on the Workstation
scenario is to describe how the WS RMS acts upon a user request to change the configuration of
the Telemetry Subsystem on the RTS.

3.2.4.9.2 Request for Telemetry Configuration Change Arrives on the Workstation
Summary Information
Interfaces:
Telemetry Subsystem
FOS User Interface Subsystem
Stimulus:

The user, wishing to send a limit adjustment to a particular telemetry subsystem, sends an
Adjust Limit Request, viathe user interface.

Desired Response:
The RMS software will determine that the configuration change is for telemetry on the RTS
and forward the Request to the RTS RMSif it came from avalid Ground Controller.
Pre-Conditions:
A string will have to already have been created in order to change its configuration.
A user will need to have the Ground Control Privilege before sending the Request. Otherwise,
the Request will be rejected by the WS RMS.
Post-Conditions:
The telmetry processes on the RTS will be reconfigured to reflect the configuration change.

All mirrored telemetry processes on the userstation will be reconfigured to reflect the
configuration change.

3.2.4.9.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrAdjustLimitRequest is
returned. The Controller invokes the AdjustLimitRequest object's Execute operation. A string
search is performed and a nondedicated string is found. The FrGrAdjustLimitRequest's
mySendFlag attribute is checked to ensure that the Request arrived from the FUI and will need to
beforwardedtothe RTSRMS. TheUser ID and User WSID is checked to ensure that the Request
came from avalid Ground Controller. The Request is validated and the FrGrAdjustLimitRequest
object is forwarded to the RTS RMS. A backup string is found and the FrGrAdjustLimitRequest
object is forwarded to the RTS RMS responsible for the backup string. A second
FrGrAdjustLimitRequest object is sent back from the RTS RMS in order for the telemetry on this
particular workstation to be reconfigured to reflect the limit adjustment. The second

3-62 305-CD-043-001

FrGrAdjustLimitRequest object is notified to execute by the original FrGrAdjustLimitRequest
object. A string search is performed and the nondedicated string is found. The
FrGrAdjustLimitRequest object's mySendFlag is checked and it ensures that this
FrGrAdjustLimitRequest object will not be forwarded back to the RTSRMS. The FrGrTelemetry
object isretrieved from the string and the corresponding telemetry processes are reconfigured via
the FrGrTelemetryProcess object. Theoriginal FrGrAdjustLimitRequest object isnotified that the
second FrGrAdjustLimitRequest object has completed execution and the origina
FrGrAdjustLimitRequest object deletes the second FrGrAdjustLimitRequest object. The RTS
RMS sends back the completion of the origina FrGrAdjustLimitRequest and the FUI is notified
that the AdjustLimitRequest has been processed. The FrGrAdjustLimitRequest is deleted.

3.2.4.9.4 State Transition Description

3.2.4.10 Request for Telemetry Configuration Change Arrives on the Real-Time
Server Scenario

3.2.4.10.1 Request for Telemetry Configuration Change Arrives on the Real-Time
Server Abstract

The purpose of the Request for Telemetry Configuration Change Arrives on the Real-Time server
scenario isto describe how the telemetry configuration change is sent to the appropriate telemetry
process.

3.2.4.10.2 Request for Telemetry Configuration Change Arrives on the Real-Time
Server Summary Information
Interfaces:
Telemetry Subsystem
FOS User Interface Subsystem
Stimulus:

The RMS on the workstation forwards a FrGrAdjustLimitRequest object to the RTS RM S for
processing.

Desired Response:

The RMS software will send the configuration change to the appropriate telemetry processes
aswell asall mirrored userstations.

Pre-Conditions:

A string will have to already have been created in order to change its configuration.
Post-Conditions:

The telmetry processes on the RTS will be reconfigured to reflect the configuration change.

All mirrored telemetry processes on the userstation will be reconfigured to reflect the
configuration change.

3-63 305-CD-043-001

T00-E0-AD-S0E

FrGrTelemetry imitReq FIGr FtTiTelemetryConfig

FrGrController FrGrRequestHandler Rwset RWSet q] Fi FiGr y q Y
|_GetRequest
FromQueue |
queptToE:
stringlsNotDedicated
—
MySendFlaglsl
(—eheckGCid&GCws!e3>t
iserldMatchesGCidé. |
ksldMatchesGCwsld
questToRtsR
quSIT pl
onfigCl o
onfigChangeRegt
questToExecuteOnTheW
findString
stringlsNotDedicated
mySendFlaglsZero
TelemetryObij
I&——econfigTIm——
forwardConfigChs
l<€—econfigComplete—|
I—+econfigTimComplete-3>{
|__notifyFuiOfRequest
Completion]

Figure 3.2.4.9.4-1. Request for Telemetry Configuration Change Arrives on the Workstation Event Trace

3.2.4.10.3Scenario Description

The Controller checks the queue of the FrGrRmsWsRmslF and a FrGrAdjustLimitRequest is
returned. The Controller invokes the FrGrAdjustLimitRequest object's Execute operation. A
string search is performed and the string isfound. The FrGrTelemetry object isretrieved from the
string and the corresponding telemetry processes are reconfigured, via the FrGrTelemetryProcess
object, to reflect the limit adjustment. @ The mySendFlag attribute is set and the
FrGrAdjustLimitRequest is sent back to each mirrored WS RMSin order for its telemetry process
to be reconfigured. The WS RMSisnotified that the AdjustLimitRequest has been processed and
the FrGrAdjustLimitRequest object is deleted.

3-65 305-CD-043-001

99-€

T00-E0-AD-S0E

ErGrController RWSet FrGrAdjustLimitRequest FrGrString FrGrRtsRmsRequestProxy FrGrRmsWsRmsIF RWSet FrGrTelemetry FrGrTelemetryProcess FtTITelemetryConfig
chechQueue >>1
| GetRequest
FromQueue >
<& returnRequest

notifyRequestTjoExecute ——————>>

<&——findString
—— StringFound —=>>|
GetTelemetry ——>>f
reconfigTelemetry >
—— fwdConfigChange —=>>{
f———— reconfig ———>>{
(<&— reconfigComplete
(<&— reconfigComplete ——
<< recopfigComplete
setSendFlag
getMirroredWs —>>f

—— sendRequestToMirroredWS ——>>|

getMirroredWsS —>>f

———— sendRequestToMirroredWS ———>>

getMirroredWS —>>|

I<€— noOtherMirroredWS —|

[<&—— requestDong¢Executing

notify\VsRmsOfRequestCompletion >>

deleteRequest ———— 8 >>

Figure 3.2.4.10.4-1. Request for Telemetry Configuration Change Arrives on the Real-Time Server Event

uondiosaq uonisuel] awrls v OT'v¥'2'E

3.2.4.11 Request for Dedicated Replay Telemetry Arrives on the Workstation from
DMS Scenario

3.2.4.11.1 Request for Dedicated Replay Telemetry Arrives on the Workstation
from DMS Abstract

The purpose of the Request for Dedicated Replay Telemetry Arrives on the Workstation from
DM Sisto describe how the workstation RM S acts upon auser request for dedicated replay service.

3.2.4.11.2 Requestfor Dedicated Replay Telemetry Arrives on the Workstation from
DMS Summary Information

Interfaces:
Parameter Server Subsystem
Telemetry Subsystem
Data Management Subsystem
Stimulus:

A user, wishing to establish a dedicated replay service on the workstation, enters a Replay
Service Reguest on the command line. FUI, inturn, sends a Replay Service Request to the
DMS. DM Sdeterminesif there are any database crossoversin the time period selected and
sends this Request to the RMS.

Desired Response:

The RMS software will create a Dedicated Replay String on the userstation that includes a
replay telemetry process.

Pre-Conditions:
The telemetry datato be replayed is made available by DMS.
Post-Conditions:
A telemetry process has been created and is capable of receiving replay datafrom DMS.

3.2.4.11.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrReplayServiceRequest is
returned. The Controller invokes the ReplayServiceRequest object's Execute operation. The
NULL valuefor the myRTSid attribute indicates that the Request isfor dedicated replay telemetry.
A string is made and added to the String Table. Since a Dbld was provided with the Request, RMS
will not have to query DMS for a Dbld. A FrGrParameterServer object is created, added to the
string, and the Parameter Server process is started. The FrGrTelemetry object is created and the
corresponding FrGrTelemetryProcess object is created. The FrGrTelemetryProcess object will
communicate with the telemetry process proxy. The FrGrTelemetry object is added to the string
and the Request object will notify the FrGrTelemetry object to configure. FrGrTelemetry will
notify the FrGrTelemetryProcess object to start. The FrGrTelemetryProcess object will create its
process and tell it the RM S address on the command line. The process will notify RMS that it is
aive. The FrGrTelemetry object will configure the telemetry process via the
FrGrTelemetryProcess object. The Controller isnotified that the Regquest has been processed and
the DMSisnotified of thisaswell. The FrGrReplayServiceRequest object is then deleted.

3-67 305-CD-043-001

89-€

T00-E0-AD-S0E

w
N
=
=
RWSet FrGrRequestHandler FrGrController FrGrReplayServiceRequest RWSet FrGrDedicatedReplayString FrGrParameterServer FrGrTelemetry FrGrTelemetryProcess FtTITelemetryConfig &
[<€&——checkQueue—— 8
< GetRequest__| —
FromQueue D
——returnRequest—>>| —
—_
——executeRequest—>f QJ
>
myRTSid 23
IsNull —
@)
1akeString: >> 35
——addStringToTable—>> D
D
— (7]
dbidPresent o)
—
f———cfeateParameterServerObject{————mM8 > ©
~—
——————addParameterServerToString—————>>1 (@]
-]
tartParameterServer >
reateTelemetryObject: >>
-addObjec{ToString——— >
createFrGrTelemetry.
[ProcessObject >
Config >>
[——createTImProcess—3>
[<&—timProcessCreated—
———config———>>
sendConfiginfo——>>
<&—configinfoReceived—
l&——configComplete——
=4 TelemetryCGreated-
l<&—executionComplete—]
notifyDmsOfRequest_|
<< Completion
——deleteRequest—>>1

Figure 3.2.4.11.4-1 Request for Dedicated Replay Telemetry Arrives on the Workstation from DMS Event Trace

3.2.4.12 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Scenario

3.2.4.12.1 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Abstract

The purpose of the Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis scenario is to describe how the WS RMS acts upon a request for a dedicated replay
service.

3.2.4.12.2 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Summary Information

Interfaces:
FOS Analysis Subsystem
Parameter Server Subsystem
Telemetry Subsystem
Stimulus:

Analysis, wishing to establish a dedicated replay telemetry process on the workstation, sends
aReplay Service Request, viathe Analysis Subsystem.

Desired Response:

The RMS software will create a Dedicated Replay String on the userstation that includes a
replay telmetry process.

Pre-Conditions:
The telemetry data to be replayed is made available by DMS.
Post-Conditions:
A telemetry process has been created and is capable of receiving replay datafrom DMS.

3.2.4.12.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrReplayServiceRequest is
returned. The Controller invokes the ReplayServiceRequest object's Execute operation. The
NULL vauefor themyRTSid attribute indicates that the Request isfor dedicated replay telemetry.
A string is made and added to the String Table. Since aDbld was provided with the Request, RMS
will not have to query DMS for a Dbld. A FrGrParameterServer object is created, added to the
string, and the Parameter Server process is started. The FrGrTelemetry object is created and the
corresponding FrGrTelemetryProcess object is created. The FrGrTelemetryProcess object will
communicate with the telemetry process proxy. The FrGrTelemetry object is added to the string
and the Request object will notify the FrGrTelemetry object to configure. FrGrTelemetry will
notify the FrGrTelemetryProcess object to start. The FrGrTelemetryProcess object will create its
process and tell it the RM S address on the command line. The process will notify RMSthat it is
aive. The FrGrTelemetry object will configure the telemetry process via the
FrGrTelemetryProcess object. The Controller is notified that the Request has been processed and
the Analysis Subsystem is notified of this aswell. The FrGrReplayServiceRequest object is then
deleted.

3-69 305-CD-043-001

0L-€

T00-E0-AD-S0E

RWSet FrGrRequestHandler FrGrController FrGrReplayServiceRequest RWSet FrGrDedicatedReplayString FrGrParameterServer FrGrTelemetry FrGrTelemetryProcess FtTITelemetryConfig
(<€&——checkQueue:
GetRequest
@Fromoueue
——returnRequest—>>
——executeRequest—3>>
myRTSid
IsNull
ing >>
——addStringToTable—>>

—_—
dbidPresent

dreateParameterServerObject+————————— >
addParameterServerToString———>>|

startParameterServer >>
reateTelemetryObject >>
addObjectToString—————>>
createFrGrTelemetry
[ProcessObject >
Config

——createTImProcess—>>

<<—tlmProcessCreated—
f———config——>>
——sendConfiginfo—>=>{
I<€-configinfoReceived—
(<€&——configComplete——
<< TelemetryCreated-
[<&—executionComplete—
notifyAnaOfRequest_ |
< Completion
——deleteRequest—>>

Figure 3.2.4.12.4-1 Request for Dedicated Replay Telemetry Arrives on the Workstation from
Analysis Event Trace

uondiiosaq uolnisuel] d1eIS H'ZTv'Z’e

3.2.4.13 Request for a String Failover Arrives on the Workstation Scenario

3.2.4.13.1 Request for a String Failover Arrives on the Workstation Abstract

The purpose of the Request for a String Failover Arrives on the Workstation scenario isto describe
how the workstation RM S acts upon user request for a string failover.

3.2.4.13.2 Request for a String Failover Arrives on the Workstation Summary
Information

Interfaces:
FOS User Interface Subsystem
Stimulus:

The user, wishing to failover a string, sends a StringFailoverRequest to RMS, via the user
interface.

Desired Response:

The RM S software will forward the Request to the RTS where the failed string residesin order
for it to be deactivated. Once the failed string has been deactivated, the Request is
forwarded to the RTS where the active string resides in order for it to be activated. Asa
result, the failed string has been failed over to a backup string.

Pre-Conditions:
A backup string has already been created.
The user sending the Failover Request has Ground Control Authority on the failed and backup
strings.
Post-Conditions:
Thefailed string has been switched to inactive. Commands cannot be sent to the spacecraft via

the failed string. Telemetry data, NASCOM blocks, and CODA reports are not being
archived by the failed string and GCMRs cannot be sent to NCC viathe RCM software.

The backup string has been switched to an active string and all processing previously done via
the failed string is done by the new active string.

3.2.4.13.3 Scenario Description

The Controller checks the queue of the FrGrRequestHandler and a FrGrStringFailoverRequest is
returned. The Controller invokes the StringFailoverRequest object's Execute operation. A string
search is performed and the failed string isfound. The Userld and User Workstation ID isensured
to be valid Ground Controller IDs. The myActionFlag attribute is set to Deactivate and the
FrGrStringFailoverRequest is passed to the RTS RM S for processing.

Once the RTS RMS has finished processing the Request, another string search is performed and
the backup string is found. The Request's Action Flag is set to "Activate" and sent to the RTS
where the backup string resides. Once the RTS RMS has finished processing the Request, FUI is
notified and the FrGrStringFail overRequest object is deleted.

371 305-CD-043-001

L€

T00-E0-AD-S0E

FrGrController RWSet FrGrRequestHandler RWSet FrGrStringFailoverRequest FrGrRealtimeString FrGrWsRmsRequestProxy FrGrWsRmsRequestProxy

chetkQueue ———————— >
< GetRequest
From Queue
<€&———rethrnRequest

notifyRequestTdExecute >

<&—— findFailedString

stringFound —>

[~ user&WwsldisValidGC =

uondiosaq uonisuel] aRISY' ST V' 2’ €

Set myActivationFlag
To Deactivate

[E—N
———— sendThisRequgstToRtsRms ——
I<&—— RtsRmsDoneEkecutingRequest

<&— findBackupString

stringFound —>

set myActionFlagToActivate ‘
H

sendThisRequestTo
RtsRms >

RtsRmsDoneExecuting
<< Request

<< requestDonekxecuting

notifyFliiOfRequest >
Completion

deleteReqyest >

Figure 3.2.4.13.4-1. Request for a String Failover Arrives on the Workstation Event Trace

3.2.4.14 Request for String Deactivation Arrives on the Real-Time Server Scenario

3.2.4.14.1 Requestfor String Deactivation Arrives on the Real-Time Server Abstract

The purpose of the Request for String Deactivation Arrives on the Real-Time Server scenario isto
describe how the RTS RMS acts upon a request for string deactivation. String deactivation
involves the change of the logical string's operational state from Active to Inactive.

3.2.4.14.2 Request for String Deactivation Arrives on the Real-Time Server
Summary Information

Interfaces:
Command Subsystem
Real-Time Contact Management Subsystem
Telemetry Subsystem
FUI Ground Script Controller Subsystem
Stimulus:

The workstation RM S sends a FrGrStringFailoverRequest object to the RTS RMS for string
deactivation.

Desired Response:

The RMS software will deactivate a failed string by notifying Command, RCM, Telemetry,
and the Ground Script Controller software of its new state.

Pre-Conditions:
The string that the RTS RM S is attempting to deactivate will need to already exist.
Post-Conditions:

The Command, RCM, Telemetry, and Ground Script Controller software will be notified of its
inactive state.

3.2.4.14.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmslF and a FrGrStringFailoverRequest is
returned. The Controller invokes the FrGrStringFailoverRequest object's Execute operation. The
Action Flag is checked and found to have a value of "Deactivate." This indicates to the Request
object that it needs to deactivate a string rather than activate it. A string search is performed and
thefailed string isfound. After changing the string's state, a TableUpdateRequest object is created
and multicasted to each WS RMS in order for the WS RMS String Table to be updated. The
FrGrCommand object is retrieved from the string. In Figure 3.2.4.15.4-2, the FrGrCommand
object's stateis changed. The corresponding command processes are notified of their new statevia
the FrGrCommandProcess objects. In Figure 3.2.4.14.4-1, the Request object is notified that the
Command state has been changed and the FrGrRTContact object is retrieved from the string. In
Figure 3.2.4.15.4-4, the FrGrRTContact object's state is changed. The new state is sent to the
RCM processes via the FrGrRcmProcess objects. In Figure 3.2.4.14.4-1, the Request object is
notified that the RT Contact state has been changed and the FrGrTelemetry object isretrieved from

3-73 305-CD-043-001

the string. In Figure 3.2.4.15.4-3, the FrGrTelemetry object's state is changed. The new state is
sent to the telemetry processes via the FrGrTelemetryProcess objects. In Figure 3.2.4.14.4-1, the
Request object is notified that the Telemetry state has been changed and the
FrGrGroundScriptController object is retrieved from the string. In Figure 3.2.4.15.4-4, the
FrGrGroundScriptController object's state is changed and the new stateis sent to the Ground Script
Controller process. In Figure 3.2.4.14.4-1, the Request object is notified that the Ground Script
Controller state has been changed. The WS RMSis notified that the Request has been processed,
viathe Controller, and the FrGrStringFailoverRequest is del eted.

3-74 305-CD-043-001

QL€

T00-E0-AD-S0E

w
N
a
See Appropriate =
Subsystem N
Reconfiguration -
FrGrController RWSet FrGrTableUpdateRequest FrGrstringFailoverRequest — FrGrRmsWsRmsIF ~ RWSet FrGrRtsRmsRequestProxyFrGrRealtimeString Page (4,3)
—t
checkQueue >> ,Q_-)'_
_GetRequest» ®
FromQueue —
—
<< returnRequest QD
>
notifyRequestToExecute——>>1 (ﬁ
=
yActionFlag=Deactivate g
<<— findFailedString——— (‘?
) (7))
———StfingFound——>>{ 'e)
-
hangeString o]
< CreateR'I(;thvllg;Jtpdate_ =4
multicastTableUpdate | > 6)
Request S
getComimand
hangeCommandStat >>{
<< €ommandStateChang
getRTCdntact
hangeRTContactStat >>
<< RTContactStateChangeg
getTelemetry
hangeTelemetryStat >>
<< FelemetryStateChang
getGsc
hangeGscStatt >>
<< GscStateChanged
<&——t+—+equestDongExecuting——
AotifyWsOfRequestCompletio! >
deleteRequest—— >

Figure 3.2.4.14.4-1. Request for String Deactivation Arrives on the Real-Time Server Event Trace

3.2.4.15 Request for String Activation Arrives on the Real-Time Server Scenario

3.2.4.15.1 Request for String Activation Arrives on the Real-Time Server Abstract

The purpose of the Request for String Activation Arrives on the Real-Time Server scenario is to
describe how the RTS RMS acts upon a request to activate a logical string. String activation
involves the change of the logical string's operational state from Backup to Active.

3.2.4.15.2 Request for String Activation Arrives on the Real-Time Server Summary
Information

Interfaces:
Command Subsystem
Real-Time Contact Management Subsystem
Telemetry Subsystem
FUI Ground Script Controller Subsystem
Stimulus:
The workstation RM S sends a FrGrStringFailoverRequest object to the RTS RMS for string
activation.
Desired Response:

The RM S software will activate a backup string by notifying Command, RCM, Telemetry, and
the Ground Script Controller software of its new state.

Pre-Conditions:
The string that the RTS RM S is attempting to activate will need to already exist.
Post-Conditions:

The Command, RCM, Telemetry, and Ground Script Controller software will be notified of its
active state.

3.2.4.15.3 Scenario Description

The Controller checks the queue of the FrGrRmsWsRmslF and a FrGrStringFailoverRequest is
returned. The Controller invokes the FrGrStringFailoverRequest object's Execute operation. The
Action Flag is checked and found to not have avalue of "Deactivate." Thisindicatesto the Request
object that it needs to activate a string rather than deactivate it. A string search is performed and
the backup string is found. The string's state is changed and the myFailedRTSid is found to not
haveavaueof "FAILED." Therefore, amessage does not have to be multicasted tothe WSRMS's
to remove the failed string from their string tables. The RTS that the failed string resides on is
capable of updating the string table. The backup string's ActiveStringlD attribute is changed to
NULL asaresult of the string becoming active rather than backing up the string identified by the
ActiveStringlD. A TableUpdateRequest object is created and multicasted to each WS RMS in
order for the WS RM S String Tableto be updated. The FrGrTelemetry object isretrieved from the
string. In Figure 3.2.4.15.4-3, the FrGrTelemetry object's state is changed. The new state is sent
to the telemetry processes via the FrGrTelemetryProcess objects. In Figure 3.2.4.15.4-1, the

3-76 305-CD-043-001

Request object is notified that the Telemetry state has been changed and the FrGrCommand object
is retrieved from the string. In Figure 3.2.4.15.4-2, the FrGrCommand object's state is changed.
The corresponding command processes are notified of their new state via the
FrGrCommandProcess objects. In Figure 3.2.4.15.4-1, the Request object is notified that the
Command state has been changed and the FrGrRTContact object is retrieved from the string. In
Figure 3.2.4.15.4-4, the FrGrRTContact object's state is changed. The new state is sent to the
RCM processes via the FrGrRcmProcess objects. In Figure 3.2.4.15.4-1, the Request object is
notified that the RTContact state has been changed and the FrGrGroundScriptController object is
retrieved from the string. In Figure 3.2.4.15.4-4, the FrGrGroundScriptController object's state
is changed and the new state is sent to the Ground Script Controller process. In Figure 3.2.4.15.4-
1, the Request object is notified that the Ground Script Controller state has been changed. The WS
RMS is notified that the Request has been processed, via the Controller, and the
FrGrStringFailoverRequest is deleted.

3-77 305-CD-043-001

8.-€

T00-E0-AD-S0E

w
N
See Appropriate =
Subsystem (@)]
Reconfiguration .
FrGrController RWSet FrGrTableUpdateRequest FrGrStringFailoverRequest RWSet FrGrRmsWsRmslF ~ TTGIRtsRmsRequestProxy FrGrRealtimeString Page N
~+
checkQuet >> Q.)
—
< GetRequest. D
FromQueue _|
<< turnRequest: -
notifyRequestToExecut >>1 >
(2]
—_—
myActionFlag!=Deactivate :
o
-]
<<€ indString:
tringFound >>f D
) 0
hangeString; >>i o)
—
myFailedRTSid!=FAILED (@]
P —N —
hangeActiveStringID aftribute to NULL. >>i g
I<€—CreateTableUpdateRequest—
mylticastTableUpdateRequest—+————————————>>
getTelemefry >>
hangeTelemetry >>i
<< TelemetryStateChanged
getCommay >>
hangeCommand: >>i
<< CommandStateChanged
getRTContact. >>
hangeRTContact! >>
<& RTContactStateChanged-
getGsc >>
hangeGscStat >
<& GpcStateChanged
<< questDoneExecuting
notifyWsOfRequestCompletio >>1
deleteRequest >>f

Figure 3.2.4.15.4-1. Request for String Activation Arrives on the Real-Time Server Event Trace

6.-€

T00-E0-AD-S0E

FrGrStringFailoverRequest FrGrCommand ~ FrGrCommandProcess ~ FOGnRmsTransmitProxy — FrGrCommandProcess ~ FOGhRmsFormatProxy FrGrCommandProcess ~ FoGnCmdFopRmsProxy
-ehangeCommandState>>{

Reconfig——=>
9 ——SendNewState—>>|
CommandProcess << NewStateReceived—
<< Reconfigured]|
Reconfig >>
——SendNewState—>>|
<<—NewStateReceived—]
<&——————1+CcommandProcessReconfigured—————————
Reconfig >
——SendNewState—>>|
) <<—NewStateReceived—]
<< €ommandProcessReconfiguree

I<€CommandStateChangeeH

Figure 3.2.4.15.4-2. Command State Change Event Trace

08-€

T00-E0-AD-S0E

FrGrStringFailoverRequest

— changeTelemetryState —>>|

FrGrTelemetry

FrGrTelemetryProcess FtTITelemetryConfig FrGrTelemetryProcess FtTITelemetryConfig FrGrTelemetryProcess FtTITelemetryConfig FrGrTelemetryProcess
Reconfig ——>>
SendNewState ——=>{
TelemetryProcess _<{— NewStateReceived —
<€ Reconfigured
Reconfig >>
SendNewState ——>>1
f<&— NewStateReceived ——
<< T Y
Reconfig >>
SendNewState ——>>f
<&— NewsStateReceived ——]
<<
Reconfig
SendNewState ——>>|
[<€— NewsStateReceived ——
< T v

I<€&— TelemetryStateChanged —|

Figure 3.2.4.15.4-3. Telemetry State Change Event Trace

FATIDumpConfig

18-€

T00-E0-AD-S0E

FrGrStringFailoverRequest FrGrRTContact FrGrRcmProcess FoGnRmsRcmProxy grGrRemProcess FoGnRmsRcmProxy
changeRTContact —>>|
Reconfig —>>
SendNewState ——>>
RemProcess [<<— NewsStateReceived —
<— Reconfigured — |
Reconfig >
— SendNewState —>]
<< NewStateReceived —
RTContactState <&—————————— RemProcessReconfigured
< Changed
changeGscStatg >>1
<< GscStateChanged

FrGrGroundScriptController

—— SendNewState —>>|

<&~ NewStateReceived —

Figure 3.2.4.15.4-4. Real-Time Contact Management and Ground Script Controller

FuCcGscProxy

3.2.5 RMS String Manager Component Data Dictionary

FrGrAdjustLimitRequest
class FrGrAdjustLimitRequest
Thisclassisresponsible for containing all functionality necessary for processing the limit
adjust request.
Base Classes
public FrGrRequest

Public Construction
FrGrAdjustLimitRequest(const FrGrAdjustLimitRequest&)
This routine creates a duplicate of this class.
FrGrAdjustLimitRequest()
This routine creates an instance of this class.
~FrGrAdjustLimitRequest()
This routine deletes an instance of this class.

Public Functions

EcTInt configTIm()
This routine finds the appropriate telemetry object i and
notifies it of the configuration change.

EcTInt execute(FrGrController* Controller)

Thisroutineis responsible for containing all functionality necessary for processing the
request. It calls additional subroutinesin order to accomplish this task.

EcTInt sendConfigChange(FrGrRmsWsRmslF* PassedFrGrRmsWsRmslI F)

This routine iterates through the list of mirrored workstations and sends them the
configuration change.

Private Data
EcTInt myParameterid

This member variable identifies the parameter identifier

of the parameter for which tht user has requested a limit
setting change.

EcTInt mySetid
This member variable identifies the set of parametersto
be affected by the request.

3-82 305-CD-043-001

RWCString myTelemetryType

This member variable indentifies the telemetry subsystem to be reconfigured. This could
be HouseK eeping, Health and Safety, Standby or Diagnostic.

RWCString myType

This member variable identifies tht type of limit, i.e. boundary, rail or delta.
EcTDouble myValue

This member variable identifies the new limit value

FrGrBackupServiceRequest
class Fr GrBackupServiceRequest
This_ classisresponsible for containing al functionality necessary for processing the backup
service request.
Base Classes
public FrGrRequest

Public Construction
FrGrBackupServiceRequest(const FrGrBackupServiceRequest&)
This routine creates a duplicate of this class.
FrGrBackupServiceRequest()
This routine creates an instance of this class.

~FrGrBackupServiceRequest()
This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

Thisroutine is responsible for containing al functionality necessary for processing the
request. It calls additional subroutinesin order to accomplish this task.

Protected Functions

EcTInt CreateGSC(FrGrStrManResMonl F* PassedStrManResMonlF)

This routine creates a GroundScriptController object for FUI and setsthe FUI attributes, it
also adds the GroundScriptController object to the string resource list.

EcTInt createCmd(FrGrStrManResM onl F* PassedStrManResMonl F)

Thisroutine is responsible for creation of the Command Object and notification of the
Command Object that it needsto configureaCommand Process. In addition, it notifiesthe
Resource Monitor Task of the new Command Process.

3-83 305-CD-043-001

EcTInt createParamSer ver (FrGrStrManResMonl F* PassedStrM anResM onl F)
Thisroutine isresponsible for the creation of the Parameter Server Object.
EcTInt createRcm(FrGrStrManResM onl F* PassedStrManResMonl F)

Thisroutine is responsible for creation of the RTContact Object and notification of the
RTContact Object that it needs to configure a RCM Process. In addition, it notifies the
Resource Monitor Task of the new RCM Process.

EcTInt createT Im(FrGrStrManResMonlF* PassedStrM anResM onl F)

Thisroutine is responsible for creation of the Telemetry Object and notification of the
Telemetry Object that it needs to configure a particular telemetry process. In addition, it
notifies the Resource Monitor Task of the new Telemetry Process.

FrGrString* findString(RWSet* PassedStringTable, int PassedStringl D)
This routine finds a particular string in a string table based on the Stringld.

FrGrString* makeString()
This routine makes a particular string based on attributes of the request.

Private Data
RWCString myCawsld
This member variable identifies the workstation with Command Authority.
RWCString myCald
This member variable identifies the person with Command Authority.
RWCString myDiagnosticTImConfigFilename

This member variable identifies the configuration filename for the Diagnostic Telemetry
process.

RWCString myEoutM gr RcmConfigFilename

This member variable identifies the configuration filename for the RCM EoutMgr process.
RWCString myFopCmdConfigFilename

This member variable identifies the configuration filename for the Command process.

RWCString myFor matCmdConfigFilename

This member variable identifies the configuration filename for the Format Command
process.

RWCString myGcld
This member variable identifies the person with Ground Station priviledge.

RWCString myGcWsld
This member variable identifies the workstation with Ground Control priviledge.

RWCString myH StiImConfigFilename
This member variable identifies the configuration filename for the Health & Safety

3-84 305-CD-043-001

Telemetry process.

RWCString myHKkTImConfigFilename

This member variable identifies the configuration filename for the Housekeeping
Telemetry process.

RWCString myM ode

This member variable identifies the logical string mode, i.e. operational, test or training.
RWCString myNoutM gr RcmConfigFilename

Thismember variableidentifiesthe configuration filename for the RCM NoutMgr process.
EcTInt myRTSid

This member variable identifies the Real-Time Server on which this backup string isto be
created.

RWCString mySbTImConfigFilename

This member variable identifies the configuration filename for the Standby Telemetry
process.

RWCString myScid
This member variable identifies the spacecraft.
EcTInt myStringl D

This member variable identifies the logical string for which this backup string isto be
created.

RWCString myUplinkCmdConfigFilename
This member variable identifies the configuration filename for
the Uplink Command process.
RWCString myUser 1D
This member variable identifies the user from whom this request originated.
RWCString myWksI D
This member variable identifies the user station from which this request originated.

FrGrCommand
class Fr Gr Command
A description of the class

3-85 305-CD-043-001

Base Classes
public Fr Gr Software

Public Construction

FrGr Command(const FrGrCommand&)
FrGrCommand(const FrGrCommand&)
This member function creates a duplicate of this class.

FrGrCommand()
This member fuunction is the default constructor for this class

~FrGrCommand()

Thismember function isthe destructor for thisclass. 1t will call the FrGrCommand:: Stop()
operation.

Public Functions

EcTInt ChangeState(State)

This member function will change the myState attribute of this class as well as send the
change to the CMD processes.

EcTInt Config(RWCString FormatFile, RWCString TransmitFile, RWCString FopFile)
Config(RWCString FormatFile, RWCString TransmitFile, FopFile)

This member function calls the MakeRmsAddress and the MakeDmsAddress subroutines
before calling myCmdFormat->StartCmdProcess(), myCmdTransmit->StartCmdProcess()
and myCmdFop->StartCmdProcess(). These operations will start and configure the
corresponding CMD processes.

EcTint Config(void)

This member function calls the MakeRmsAddress and the MakeDmsAddress subroutines
before calling myCmdFormat->StartCmdProcess(), myCmdFop->StartCmdProcess() and
myCmdTransmit->StartCmdProcess(). These operations will start and configure the
corresponding CMD processes.

EcTInt Reconfig(RWCSting configParameter)

This member function will determine which CMD process will receive a configuration
parameter and call either the myCmdFormat-> ReconfigCmdProcess(RWCString
configParameter), myCmdFop-> ReconfigCmdProcess(RWCString configParameter) or
myCmdTransmit-> ReconfigCmdProcess(RWCString configParameter).

EcTInt Snap(void)

This member function will notify the Format, Transmit and FOP processes to take a
configuration snapshot of themselves and update their mySnapFilename attribute.

EcTInt Stop(void)
This member function will call myCmdFormat->StopCmdProcess(), myCmdFOP-

3-86 305-CD-043-001

>StopCmdProcess and myCmdTransmit->StopCmdProcess().

Protected Functions

EcTInt MakeDmsAddress(void)

This member function will set the myRmsA ddress attribute which will be used to start the
CMD processes.

EcTInt MakeRmsAddress(void)
Thismember function will set the myDmsA ddress attribute which will be used to configure
the CMD processes.
Private Data
FrGrCommandProcess* myCmdFop
This member variable points to the Fop object.
FrGrCommandProcess* myCmdFor mat
This member variable points to the Format object.
FrGrCommandProcess* myCmdTransmit
This member variable points to the Transmit object.
Address* myDmsAddress
This member variable identifies the address of the DM S process that the CMD processes
will communicate with.
FrGrCommandPriviledgeRequest
class Fr Gr CommandPriviledgeRequest
Thisroutineis responsible for containing all functionality necessary for processing the
command priviledge request. It calls additional subroutinesin order to accomplish this task
Public Construction
FrGrCommandPriviledgeRequest(const FrGrCommandPriviledgeRequest&)
This routine creates a duplicate of this class.
FrGrCommandPriviledgeRequest()
This routine creates an instance of this class.
~FrGrCommandPriviledgeRequest()
This routine deletes an instance of this class.

Fr Gr CommandPr ocess
class Fr Gr CommandPr ocess

This class us used to create, destroy, configure and reconfigure any of the potential command
processes, i.e. Format, Transmit or Frame Operations Procedure (FOP). It will also take a

3-87 305-CD-043-001

configuration snapshot of any of the aforementioned processes.

Base Classes
public Fr Gr Command

Public Construction

FrGr CommandPr ocess(const FrGrCommandProcess&)
This member function isa"copy constructor", it creates a duplicate of this class.

FrGr CommandPr ocess(RWCString myDbid, RWCString myScid, myState, Address*
myRmsAddress)

This member function is the default constructor for this class.

~FrGr CommandProcess()

This member function is the destructor for this class. It will cal the
FrGrCommandProcess:: StopCmdProcess() member function.

Public Functions

EcTInt ConfigCmdPr ocess()

This member function sends configuration information to the FrGrCommandProcess
process after it has been started.

EcTInt ReconfigCmdPr ocess(RWCString configParameter)

This member function sends a reconfiguration parameter to the specified command
process.

EcTInt SnapCmdProcess(void)

This member function requests a configuration snapshot of the FrGrCommandProcess
process and updates the mySnapFilename attribute.

EcTInt SnapConfigCmdPr ocess(RWCString ConfigFile)

This member function sends snapshot configuration information to a command process
after it has been started.

EcTInt StartCmdProcess()

This member function will create a command process of one of the following command
types. Format, Transmit or FOP.

Protected Functions

EcTInt StopCmdPr ocess(void)
This member function will terminate a FrGrCommandProcess process.

3-88 305-CD-043-001

Private Data
FoGnCmdFopRmsProxy* myCmdFopProxy
This member variable points to the FoGnCmdFopRmsProxy.
EcTInt myCmdPid
This member variable identifies the command processes, Pid
RWCString myDbld

This member variable is the database identifier which is to be used by this process for the
extraction of database information.

FoGnRmsFormatProxy* myFor matProxy

This member variable points to the FoGnRmsFormatProxy.
FrGrCommand* myFr Gr Command

This member variable points to the FrGrCommand object that this object is part of.
Address* myRmsAddress

This member variable points to the address of the RM S process.
RWCString myScld

Thismember variableistheidentifier of the space craft of which this processis supporting.
RWCString mySnapFilename

This member variable identifies a snapshot configuration filename.
FoGnRmsTransmitProxy* myTransmitProxy

This member variable points to the FOGNRmsTransmitProxy.

FrGrController
class FrGrController

This class serves as the controller or coordinator for the Resource Management Subsystem.
Among its duties is the coordination of creation, deletion, and updates to all RM S-sponsored
softwarethat is part of alogical string. Thisisdone through user directive and resource status
changes.

Public Construction

FrGrController (const FrGrController&)

FrGrController(const FrGrController&)

This member function creates a duplicate of this class.

FrGrController () This member function is the default constructor for this class.
~FrGrController()

This member function is the destructor for this class.

3-89 305-CD-043-001

Public Functions
int initialize()
Thisroutine initializes the RM S based on the type of host it is running on.
int receiveRequest (FrGrRequest* receivedRequest)
This member function notifies arequest that it istime to execute.
void run()
This routine notifies the FrGrRmsWsRmsl F object to begin its runs state.

Protected Functions
EcTInt MakeFdDsFileAccessor ()
This routine creates the proxy for accessing DM Sfiles.
EcTInt MakeFr Gr RtsRmsRequestProxy()

This routine create a FrGrRtsRmsRequestProxy object in order for the RTSRMS to
communicate with the WS RMS's.

int exDefConDirs()
Thisroutineiterates through the set of Default Configuration Directives and executesthem.

int loadDef Conlnfo()

This routine loads the myDefConlnfo object from the file names by the myDefConFile
attribute.

int makeDefConlnfo()

Thisroutine setsthe myDefConlnfo pointer to point to aRWSet. Thiswill be used to store
the Default Configuration Requests.

EcTIint makeFdEvVEventL ogger obj ect()

makeFdEVEventL ogger

This routine creates a FAEVEventL oggerl F object that will be used to communicate with
DMSto log events.

int makeFoGnCsmsl Fobject()

This routine creates the FoGnCsmsl Fobject that will be used to communicate with CSMS
for user and workstation authorization.

int makeFoPsClientl F()
This routine spawns a Parameter Server process and creates a FOGnRmsPs| F
int makeFr GrRequestHandler ()
This routine creates a FrGrRequestHandler object that will be used to receive Requests.

int makeFr Gr RmswWsRmsl Fobject()

This routine creates the FrGrRmsWsRms| Fobject that will be used to communicate with
the WS RMS or the RTSRMS.

3-90 305-CD-043-001

int makeFr GrWsRmsRequestProxies()

This routine creates a FrGrWsRmsRequestProxy object for each RTS and places that |F
object into a RW Set.

int makeFr Gr WskRmsRequestPr oxy(int RM Snodel D)

Thisroutine creates a FrGrWsRmsRequestProxy object for the WS RM S to communicate
with the RTSRMS.

int makeStrM anResM onProxy()

This routine creates a FrGrStrManResM onProxy object that will be used to communicate
with the Resource Monitor process.

int makeStringT able()
This routine sets the myStringTable pointer to point to a RWSet.
int queryRT Sstrings()

This routine requests the string table from each RTS RMS in order for the WS RM S can
construct a comprehensive string table.

int reqDefConFile()

This routine sets the myDef ConFile attribute and sends the request for the file to the
FoGnRmsDmsl F object.

int setRoleg()

This routine determines the type of host that the RM S is running on and sets the myHost
attribute.

Private Data

FrGrwsRmsRequestProxy* myCurrentFr GrWsRmsRequestProxy

This attribute points to a particular workstation RMS/RTS RM S interface object,
depending on which RTS RM S the workstation RM S is communicating with at a given
time.

RWCString myDefConFile
This attribute identifies the Default Configuration File to be used at initialization.

RWSet* myDefConlnfo
This attribute points to the collection of Default Configuration Directives.

FdEvEventLogger* myFdEVEventL ogger

This attribute points to the RMS/DMS Event Logger interface object.
FoDsFileAccessor* myFileA ccessor

This attribute points to the FileAccessor proxy.

FoGnCsmslF* myFoGnCsmsl F
This attribute points to the CSM S interface object.

3-91 305-CD-043-001

FoPsClientlF* myFoPsClientl F
This attribute points to the Parameter Server Client IF.
FrGrRequestHandler* myFr GrRequestHandler
This attribute points to the Request Handler object.
FrGrRmsWsRmslF* myFr Gr RmsWsRmsl F
This attribute points to the receiver object for WS RMSto RTS RMS communication.
FrGrStrManResM onProxy* myFr Gr StrManResM onPr oxy

This attribute points to the interface object responsible for communication between the
RMS String Manager process and the RM S Resource Monitor process.

RWSet* myFr GrWsRmsRequestProxySet

Thisattribute pointsto a collection of interface objectsresponsiblefor letting aworkstation
RM S communicate with each RTS RMS.

RWCString myHost

This attribute identifies the host machine where this instance of the RMS processis
running.

RWCString myOper ationalDB

This attribute identifies the operational database that this RM S processis using.
FrGrRtsRmsRequestProxy* myRtsRmsRequestProxy

This attribute points to the RtsRmsRequestProxy object.
RWSet* myStringTable

This attribute points to the RM S String Table.

FrGrDataAr chiver

class FrGrDataAr chiver
Thisclassis used to create, destroy, and configure, the Data Archiver Process.

Public Construction

FrGrDataAr chiver (const FrGrDataArchiver&)
FrGrDataArchiver(const FrGrDataArchiver&)
This member function creates a duplicate of this class.

FrGrDataArchiver()
This member function is the default constructor for this class.

~FrGrDataAr chiver()
This member function is the destructor for this class.

3-92 305-CD-043-001

Public Functions

EcTInt Config()

This member function sends configuration information to the DataArchiver process after it
has been started.

EcTint Start()
This member function will create the Data Archiver process.

EcTInt Stop(void)
This member function will terminate a DataArchiver process.

Private Data
RWCString myDbld
This member variable identifies the Database that the data archiver process will use.

EcTInt myPid

This member variable identifies the Process ID that is associated with the Data Archiver
process.

FACfRM SConfigProxy* myRM SConfigPr oxy
This member variable points to the RM SConfigProxy.
Address* myRmsAddress
'tl)'his member variable identifies the RM S process that the DataArchiver processis started
Y.
RWCString myScld
This member variable identifies the spacecraft that the DataArchiver processis associated
with. It will be used as configuration data.
FrGrGroundControlPriviledgeRequest
class FrGr GroundContr ol PriviledgeRequest
This classisresponsible for containing all functionality necessary for processing the ground
control priviledge request. It calls additional subroutinesin order to accomplish this task.
Public Construction
FrGrGroundControlPriviledgeRequest(const FrGrGroundControl PriviledgeRequest&)
This routine creates a duplicate of this class.
FrGrGroundControlPriviledgeRequest()
This routine creates an instance of this class.
~FrGrGroundControlPriviledgeRequest()
This routine deletes an instance of this class.

3-93 305-CD-043-001

FrGrGroundControlRequest
class Fr Gr GroundControlRequest
This classfinds a particular active or backup string in a string table based on the Stringld.

Base Classes
public FrGrRequest

Public Construction
FrGrGroundControlRequest(const FrGrGroundControl Request&)
This routine creates a duplicate of this class.
FrGrGroundControlRequest()
This routine creates an instance of this class.

~FrGr GroundControlRequest()
This routine deletes an instance of this class.

Private Data

EcTInt mySendFlag

This member variable identifiesif the object needs to be forwarded to the RTS RMS.
EcTInt myStringl D

This member variable identifies the logical string to which this request refers.
RWCString myUser 1D

This member variable identifies the user from whom this request originated.
RWCString myWksI D

This member variable identifies the user station form which this request originated.

FrGrGroundScriptController
class Fr GrGroundScriptController

This classis used to create, destroy, configure, and reconfigure the Ground Script Controller
process on the RTS.

Base Classes
public Fr Gr Software

Public Construction

FrGrGroundScriptController (const FrGrGroundScriptController&)
FrGrGroundScriptController(const FrGrGroundScriptController&)
This member function creates a duplicate of this class.

3-94 305-CD-043-001

FrGrGroundScriptController()
This member function is the default constructor for this class.

~FrGrGroundScriptController
This member function is the destructor for this class. It will call the

FrGrGroundScriptController::Stop() operation.
Public Functions

EcTInt Config()

This member function sends configuration information to the GroundScriptController
process after it has been started.

EcTInt Reconfig(ECTInt configparam)
Reconfig(EcTInt)

This member function will change a GroundScriptController configuration parameter that
isan EcTInt type.

EcTInt Reconfig(RWCString configparam)
Reconfig(RWCString)

This member function will change a GroundScriptController configuration parameter that
isastring type.

EcTInt Start()
This member function will create the GroundScriptController process and passit the

configuration data.
Public Data

~FrGrGroundScriptController
This member function is the destructor for thisclass. It will call the

FrGrGroundScriptController::Stop() operation.
Protected Functions

EcTInt Stop(void)
This member function will terminate a GroundScriptController process.

Private Data

Address* myCmdAddress

This member variable identifies the command process that the GroundScriptController
process is associated with. It will be used as configuration data.

FuCcGscProxy* myGscProxy
This member variable points to the GroundScriptController Proxy.

3-95 305-CD-043-001

EcTIint myRtsld

Thismember variableidentifiesthe RT Sthe GroundScriptController processisrunning on.
It will be used as configuration data.

EcTInt myStringld

This member variable identifies the String that the GroundScriptController processis
associated with. It will be used as configuration data.

Address* myTImAddress
This member variable identifies the telemetry process that the GroundScriptController
process is associated with. It will be used as configuration data.
FrGrParameter Server
class Fr Gr Parameter Server
Thisclassis used to create and destruct an instance of the Parameter Server.

Public Construction

FrGrParameter Server (const FrGrParameterServer&)
FrGrParameterServer(const FrGrParameterServer&)
This member function creates a duplicate of this class.

FrGrParameter Server ()
This member function is the default constructor for this class.

~Fr GrParameter Server ()
This member function is the destructor for this class.

Public Functions

EcTInt Start()
Start()
This member function will start a Parameter Server process.

EcTVoid Stop()

Stop()
This member function will stop a Parameter Server process.

Private Data

EcTInt myPsPid
This member variable is the process id of the this Parameter Server.

FrGrPriviledgeRequest
class FrGrPriviledgeRequest
This routine finds a particular active or backup string in a string table based on the StringID.

3-96 305-CD-043-001

Base Classes
public FrGrRequest

Public Construction
FrGrPriviledgeRequest(const FrGrPriviledgeRequest&)
This routine creates a duplicate of this class.
FrGrPriviledgeRequest()
This routine creates an instance of this class.
~FrGrPriviledgeRequest()
This routine deletes an instance of this class.

Private Data
EcTInt myStringl D
This member variable identifies the logical string to which this request refers.
RWCString myUser 1D
This member variable identifies the users from whom this request originated.
RWCString myWksI D
This member variable identifies the user station from which this request originated.

FrGrRT Contact
class FrGrRT Contact
This classis used to create, destroy, configure, and reconfigure the RCM subsystem. In
addition, it will take a configuration snapshot of the RCM subsystem.
Base Classes
public Fr Gr Software

Public Construction
FrGrRTContact(const FrGrRT Contact&)
FrGrRTContact(const FrGrRT Contact&)
This member function creates a duplicate of this class.

FrGrRTContact()
This member function is the default constructor for this class.

~FrGrRT Contact()
Thismember functionisthedestructor for thisclass. It will call the FrGrRT Contact::Stop()
operation.

3-97 305-CD-043-001

Public Functions

EcTint ChangeState(State)

This member function will change the myState attribute of this class aswell as send the
change to the RCM processes.

EcTInt Config(RWCString EoutFile, RWCString NoutFile)
Config(RWCString EoutFile, RWCString NoutFile)

This member function calls the MakeRmsA ddress subroutines before calling the
StartRcmProcess() for the NoutMgr or EoutMgr process These operations will start and
configure the corresponding RCM processes.

EcTInt Config()

This member function calls the MakeRmsA ddress subroutines before calling the
StartRcmProcess() for the NoutMgr, NinMgr,

EoutMgr or EinMgr process.
EcTInt Reconfig(RWCString configParam)

This member function will determine which RCM process will receive a configuration
parameter and call either the ReconfigRcmProcess() for

either the NoutMgr, NinMgr, EoutMgr or EinMgr process.
EcTInt Snap(void)

This member function will notify each RCM process to take a configuration snapshot of
their corresponding processes and update their mySnapFilename attribute.

EcTInt Stop(void)
This member function will call the StopRcmProcess() member
function for each RCM process.

Protected Functions

Ectint MakeRmsAddress()
This member function will set the myRmsA ddress attribute which will be used to start the

RCM processes.
Private Data

FrGrRcmProcess* myEoutM gr
This member variable points to the EDOS output object.

FrGrRcmProcess* myNoutM gr
This member variable points to the NCC output object.

3-98 305-CD-043-001

FrGrRcmProcess
class Fr GrRcmProcess
This classis used to create, destroy, configure, and reconfigure an RCM process. In addition,
it will take a configuration snapshot of the RCM process.
Public Construction

Fr GrRcmProcess(const FrGrRcmProcess&:)
FrGrRcmProcess(const FrGrRcmProcess&)
This member function creates a duplicate of this class.

FrGrRcmProcess(RWCString myDbid, RWCString myScid, myState, Address*
myRmsAddress)

This member function is the default constructor for this class.

~FrGrRcmProcess()
This member function is the destructor for this class.

Public Functions

EcTInt ConfigRcmProcess()

This member function sends configuration information to the Rcm process after it has been
started.

EcTInt ReconfigRcmProcess(RWCString configParam)
This member function sends a reconfiguration parameter to the Rcm process.

EcTInt SnapConfigRcmProcess(RWCString ConfigFile)

This member function sends snapshot configuration information to the Rcm process after
it has been started.

EcTInt ShapRcmPr ocess()

This member function requests a configuration snapshot of the Rcm process and updates
the mySnapFilename attribute.

EcTInt StartRcmPr ocess()
This member function will create the Rcm process.

Protected Functions

EcTInt StopRcmProcess()
This member function will terminate an Rcm process.

Private Data

FrGrDataArchiver* myDataAr chiver
This member variable points to the associated FrGrDataArchiver object.

3-99 305-CD-043-001

RWCString myDbld

This member variable is the database identifier which is to be used by this process for the
extraction of database info.

FrGrRTContact* myFr GrRT Contact
This member variable points to the FrGrRT Contact object that this object is a part of.

RWCString myPr ocessName

This member variable identifies the Process Name. This can be the EoutMgr or the
NoutMar.

EcTInt myRcmlInPid

This member variable identifies the Process ID of the processthat is started by either
NoutMgr or EoutMgr.

EcTInt myRcmPid
This member variable identifies the process Pid
Address* myRmsAddress
This member variable points to the address of the Rms process.

FoGnRmsRcmProxy* myRmsRcmProxy
This member variable points to the RMS/RCM proxy.
RWCString myScld
Thismember variableistheidentifier of the space craft of which this processis supporting.

RWCString mySnapFilename
This member variable identifies a snapshot configuration filename.

FrGrRealtimeServiceRequest
class Fr Gr RealtimeSer viceRequest
_FrGrRealtimeServiceRequest_h
Thisclassisresponsible for processing a Realtime Service Request.

Base Classes
private Fr Gr ServiceRequest

Public Construction
FrGrRealtimeSer viceRequest(const FrGrReal timeServiceRequest&)
This routine creates a duplicate of this class.

FrGrRealtimeServiceRequest()
This routine creates an instance of this class.

3-100 305-CD-043-001

~Fr GrRealtimeSer viceRequest()
This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

Thisroutineis responsible for containing all functionality necessary for processing the
request. It calls additional subroutinesin order to accomplish this task.

Protected Functions

EcTInt createGSC()

Thisroutineis responsible for creation of the Ground Script Controller Object and
notification of the Ground Script Controller Object that it needs to configure a particular
Ground Script Controller process.

EcTInt createParamServer ()
Thisroutine is responsible for the creation of the Parameter Server Object.
EcTInt createRCM (FrGrStrManResM onl F* PassedStrManResMonl F)
createRcm

Thisroutineis responsible for creation of the RTContact Object and notification of the
RTContact Object that it needs to configure a RCM Process. In addition, it notifies the
Resource Monitor Task of the new RCM Process.

FrGrString* findString(RWSet* PassedStringTable)
This routine finds a particular string in a string table based on the request attributes.

FrGrString* makeString()
This routine makes a particular string based on attributes of the request.

Private Data

RWCString myM ode

Thismember variableistheidentifier of the string'smode. This can be operational, test, or
training.

RWCString myM onitor Rts

This member variable identifies the RTS that will monitor the RTS that receives this
request.

FrGrReplayRequestProxy
class Fr Gr ReplayRequestPr oxy
This class enables an external subsystem to send all types of Requeststo RMS.

Public Functions
EcTVoid GenReplayReq(RWCString Originator, RWCString Scld, RWCString Dbl d,

3-101 305-CD-043-001

RWCString RTSid, RWCString Userld, RWCString Wksld, RWCString TImType)
This member function will send a Replay Service Request to the RMS.

EcTVoid GenStrDelete(RWCString Originator, RWCString Userld, RWCString Wksld,
EcTInt Stringld)

This member function will send a String Delete Request to the RMS.
EcTInt Initialize()
This member function will establish a connection with the RM S subsystem.

Private Data
Address* myRmsAddress

This member variable identifies the Address of the RMS String Manager process.
XDR myXDR

This member variable identifies the XDR stream to which a message/object will be passed

FrGrReplayServiceRequest
class Fr GrReplayServiceRequest

This classisresponsible for identify strings via a string table based on request attributes and
StringlD. This class also creates strings based on request attributes and creates Telemetry
object, notifying the Telemetry object of their configuration. BEGIN_PROLOG

Base Classes
private Fr Gr ServiceRequest

Public Construction
FrGrReplayServiceRequest(const FrGrReplay ServiceRequest&)
This routine creates a duplicate of this class.

FrGrReplayServiceRequest()
This routine creates an instance of this class.

~Fr GrReplayServiceRequest()
This routine del etes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)

Thisroutine is responsible for containing al functionality necessary for processing the
request. It calls additional subroutinesin order to accomplish this task.

3-102 305-CD-043-001

Protected Functions
EcTInt createParamServer ()
Thisroutine is responsible for creation of the Parameter Server object.

EcTInt createReplayTIm()

Thisroutineis responsible for creation of the Telemetry Object(s) and notification of the
Telemetry Object(s) that it needs to configure a particular telemetry process.

FrGrString* makeString()
This routine makes a particular string based on attributes of the request.

Private Data

RWCString myDataType
| dentifies type of data

FrGrRequest
class Fr GrRequest
This classis ageneralization of RMS requests.

Public Construction

FrGrRequest(const FrGrRequest&)
FrGrReguest(const FrGrRequest&)
This member function creates a duplicate of this class.

FrGrRequest()
This member function is the default constructor for this class.

~FrGrRequest()
This member function is the destructor for this class.

Public Functions

virtual int execute(FrGrController* Controller)

Thismember functionisa pure virtual operation that ensuresthat all children of this object
will contain an execute operation.

Private Data

FrGrString* myCurrentString
This attribute points to the string associated with the request.

RWCString myOriginator
This attribute identifies the sender of the request.

3-103 305-CD-043-001

FrGrRequestHandler
class FrGrRequestHandler
This class will receive a message/object on an XDR stream and reconstruct the appropriate

object.
Public Construction

FrGrRequestHandler (const FrGrRequestHandler&)
FrGrRequestHandler(const FrGrRequestHandler&)
This member function creates a duplicate of this class.

FrGrRequestHandler ()
This member function is the default constructor for this class.

~FrGrRequestHandler ()
This member function is the destructor for this class.

Public Functions
FrGrRequest* CheckQueug()
This member function will return a Request object from the Queue.

EcTInt Initialize(FrGrController* Controller)
This member function will create a Queue for it's Requests. It will set it's address as well.

EcTInt receiveRequest(RWCollectable* newReguest)

This member function will receive a Request from FUI or ANALY SIS, instantiate a
FrGrRequest object, and put that Request in a Queue.

EcTInt sendStatus(RWCollectable* sentRequest)
This member function will send a status for the passed Request.

Private Data

FdEVEventL ogger* myEventL ogger
This member variable points to the FAEVEventL ogger.

RWSet* myRequestQueue
This member variable points to the Queue that contains string requests.
FrGrRmsFuiRequestProxy

class Fr GrRmsFuiRequestPr oxy
This class enables the FUI subsystem to send all types of Requeststo RMS.

Public Functions
EcTVoid GenAdjustLimitReq(RWCString Userld, RWCString Wksld, EcTInt Stringld,

3-104 305-CD-043-001

EcTInt Parameterld, RWCString Type, EcTInt ParamValue, ECTInt TImType,
EcTInt Setld)

This member function will send an Adjust Limit Request to the RMS.

EcTVoid GenBkupServReq(EcTInt Stringld, EcTInt RTSid, RWCString Userld,
RWCString Wksld)

This member function will send a Backup Service Request to the RMS.

EcTVoid GenCommandPriviledgeReq(RWCString Userld, RWCString Wksld, EcTInt
Stringld)

This member function will send a Command Priviledge Request to the RMS.

EcTVoid GenGroundControlPriviledgeReq(RWCString Userld, RWCString Wksld,
EcTInt Stringld)

This member function will send a Ground Control Priviledge Request to the RMS

EcTVoid GenRT ServReq(RWCString Scld, RWCString Dbld, RWCString RTSid,
RWCString Mode, RWCString Userld, RWCString Wksld)

This member function will send a Realtime Service Request to the RMS.

EcTVoid GenSimulationSer vReq(EcTInt Mode, RWCString Scid, RWCString Dbid,
RWCString RTSid, RWCString Userld, RWCString Wksld)

This member function will send a Simulation Service Request to the RMS.
EcTVoid GenStr Delete(RWCString Userld, RWCString Wksld, ECTInt Stringld)
This member function will send a String Delete Request to the RMS.

EcTVoid GenStringConnectReq(EcTInt Stringld, RWCString Userld, RWCString Wksld,
RWCString TImType, RWCString myUserType)

This member function will send a String Connect Request to the RMS.

EcTVoid GenStringDisconnectReq(EcTInt Stringld, RWCString Userld, RWCString
Wksld)

This member function will send a String Disconnect Request to the RMS.

EcTVoid GenStringFailOver Req(RWCString Userld, RWCString Wksld, EcTInt
FailedStringld, RWCString FailledRTSid, RWCString BackupRTSid, EcTInt
BackupStringl d)

This member function will send a String Fail Over Request to the RMS.
EcTInt Initialize()
This member function will establish a connection with the RM S subsystem.

Private Data

Address* myRmsAddress
This member variable identifies the Address of the RM'S String Manager process.

3-105 305-CD-043-001

XDR myXDR
This member variable identifies the XDR stream to which a message/object will be passed

FrGrRmsWsRmsl F
class FrGrRmsWsRmsl F
This classis used to receive messages from the WS/RTS RM S subsystem.

Public Construction
FrGrRmsWsRmsl F(const FrGrRmswWsRms|F&)
FrGrRmsWsRmsl F(const FrGrRmsWsRmsIF&)
This member function creates a duplicate of this class.
FrGrRmsWsRmsl F()
This member function is the default constructor for this class.
~FrGrRmsWsRmsl F()
This member function is the destructor for this class.

Public Functions
FrGrRequest* CheckQueug()
This member function will return a Request object from the Queue.

EcTInt Initialize(FrGrController* Controller)

This member function will create a Queue for it's Requests and possibly one for the string
table updates. It will set it's address as well.

EcTInt receiveRequest (FrGrRequest* newRequest)

Thismember function will receive a Request from the WS/'RTS RM S and put that Request
in a Queue.

EcTInt sendStatus(FrGrRequest* sentRequest)
This member function will send a status for the passed Request.

Private Data
FAEVEventLogger* myEventL ogger
This member variable points to the FAEVEventL ogger.

RWCString myH ost
This member variable identifies whether or not the RMSis on the WS
or onthe RTS.

RWSet* myRequestQueue
This member variable points to the Queue that contains string requests.

3-106 305-CD-043-001

Address* myRmsAddress
Thismember variableidentifiesthe RM S Address of the RM S subsystem to which statuses
will be sent.
FrGrRtsRmsRequestProxy
class Fr Gr RtsRmsRequest Pr oxy
This class enablesa RTS RM S to send Requests to the WS RMS.

Public Functions
EcTInt I nitialize(FrGrController* Controller)
This member function will set amulticast address and create an XDR stream.
EcTInt Multicast(FrGrRequest* Request)
This member function will receive a status on the passed Request.
EcTInt ReceiveStatus(FrGrRequest* Request)
This member function will receive a status on the passed Request.
EcTInt SendRequest(FrGrRequest* Request, Address* WsRmsAddress)
This member function will send a Request to the WS RMS.

Private Data
Address* myMulticastAddress
This member variable identifies the Multicast Address.

XDR myXDR
This member variable identifies the XDR stream to which a message/object will be passed

FrGr ServiceRequest
class Fr Gr ServiceRequest
This class creates and del etes instances of this class

Base Classes
public FrGrRequest

Public Construction

FrGr ServiceRequest(const FrGrServiceRequest&)
This routine creates a duplicate of this class.

FrGr ServiceRequest()
This routine creates an instance of this class.

3-107 305-CD-043-001

~Fr Gr ServiceRequest()
This routine deletes an instance of this class.

Protected Functions

FrGrString* makeString()
makeString()

Private Data

RWCString myDBid

This member variable contains the database id
RWCString myRT Sid

This member variable containsid of real-time server
RWCString myScid

This member variable contains the spacecraft id
RWCString myUserid

This member variable contains the id of the user
RWCString myWksid

This member variable contains the id of the Workstation

FrGr SimulationSer viceRequest
class Fr Gr SimulationSer viceRequest
_FrGrSimulationServiceRequest_h
This classis responsible for processing a Simulation Service Request.

Base Classes
private Fr Gr ServiceRequest

Public Construction
FrGr SimulationServiceRequest(const FrGrSimulationServiceRequest&)
This routine creates a duplicate of this class.
FrGrSimulationSer viceRequest()
This routine creates an instance of this class.
~Fr Gr SimulationSer viceRequest()
This routine deletes an instance of this class.

3-108 305-CD-043-001

Public Functions
EcTInt execute(FrGrController* Controller)
Thisroutine is responsible for containing al functionality necessary for processing the
request. It callsadditional subroutinesin order to accomplish this task.
Protected Functions

EcTInt createGSC()

Thisroutine is responsible for creation of the Ground Script Controller Object and
notification of the Ground Script Controller Object that it needs to configure a particul ar
Ground Script Controller process.

EcTInt createParamServer ()

Thisroutine is responsible for the creation of the Parameter Server Object.
FrGrString* findString(RWSet* PassedStringTable)

This routine finds a particular string in a string table based on the request attributes.

FrGrString* makeString()
This routine makes a particular string based on attributes of the request.

Private Data

RWCString myM ode
Thismember variableistheidentifier of the string'smode. This can be operational, test, or
training.
FrGr SnapshotCompNotif
class Fr Gr SnapshotCompNotif
Thisclassisresponsiblefor containing all functionality necessary for processing the Snapshot
Completion Notification.
Base Classes
public Fr Gr Request

Public Construction

FrGr SnapshotCompNotif(const FrGrSnapshotCompNotif&)
This routine creates a duplicate of this class.

FrGr SnapshotCompNotif()
This routine creates an instance of this class.

~Fr Gr SnapshotCompNotif()
This routine deletes an instance of this class.

3-109 305-CD-043-001

Public Functions

EcTInt execute(FrGrController* Controller)
Thisroutine is responsible for containing al functionality necessary for processing the

request. It callsadditional subroutinesin order to accomplish this task.
Protected Functions

FrGrString* findString(RWSet* PassedStringTable)
This routine finds a particular string in a string table based on the Stringld.

Private Data

EcTInt myStringl D

This member variable identifies the logical string for which this backup string isto be
created.

RWCString myTImConfigFilename
This member variable identifies the configuration filename for the Telemetry process.

Fr Gr Software
class Fr Gr Softwar e
Thisclassisavirtual base classthat containsthe Scld, Dbld, RM S address and the State of the

children.
Public Construction

Fr Gr Softwar e(const FrGrSoftware&)
FrGrSoftware(const FrGrSoftware&)
This member function creates a duplicate of this class.

FrGr Softwar &)
This member function is the default constructor for this class.

~Fr Gr Softwar &)
This member function is the destructor for this class.

Protected Functions

EcTint Stop()
This member function is pure virtual and makes this class abstract.

Private Data

RWCString myDbld

This member variable identifies the Dbld that is used to configure the RM S configurable
processes.

3-110 305-CD-043-001

Address* myRmsAddress

Thismember variableidentifiesthe address of the RM S process that the RM S configurable
processes will communicate with.

RWCString myScld
This member variable identifies the Scld that is used to configure the RM S configurable
processes.
Private Types
enum myState
This member variable identifies whether the RM S configurable processes are

in an active, inactive or abackup state. It isalso used to configure
the RCM processes.

Enumerators

ACTIVE
BACKUP
INACTIVE
FrGr StrManResM onPr oxy
class Fr Gr StrManResM onPr oxy
This class enables a String Manager to send Requests to the Resource Monitor.

Public Functions
EcTInt Initialize(FrGrController* Controller)
This member function will establish a connection with the Resource Monitor.
EcTInt ReceiveStatus(FrGrMonitorRequest* Request)
This member function will receive a status on the passed Request.
EcTInt SendRequest(FrGrMonitorRequest* Request)
This member function will send a Request to the RTS RMS.

Private Data

Address* myResM onAddress
This member variable identifies the Address of the Resource Monitor
process.

XDR myXDR
This member variable identifies the XDR stream to which a message/object will be passed

3-111 305-CD-043-001

FrGr StringAccessRequest
class Fr Gr StringAccessRequest
This classfinds a particular string in a string table based on the StringID.

Base Classes
public FrGrRequest

Public Construction

FrGr StringAccessRequest(const FrGrStringA ccessRequest&)
FrGrStringA ccessRequest(const FrGrStringA ccessRequest&)
This routine creates a duplicate of this class.

FrGr StringAccessRequest()
This routine creates an instance of this class.

~FrGr StringAccessRequest()
This routine deletes an instance of this class.

Protected Functions
FrGrString* indString(RWSet* PassedStringTable, int PassedStringl D)
findString
Thisroutine finds a particular string in a string table based on the Stringld.

Private Data
EcTInt myStringld
This member variable is the identifier of the string
RWCString myUser I d
This member variable isthe identifier of the user
EcTint myWksld
This member variableisthe identifier of the Workstation

FrGr StringConnectRequest
class Fr Gr StringConnectRequest
FrGrStringConnectRequest: :FrGrStringConnectRequest()

Thisclassisused to create amirrored and tailored telemetry object, add a mirrored or tailored
workstation, or add a user to the user list.

3-112 305-CD-043-001

Base Classes
private Fr Gr StringAccessRequest

Public Construction
FrGr StringConnectRequest()
This routine creates an instance of this class.

~FrGr StringConnectRequest()
This routine deletes an instance of this class.

Public Functions

EcTInt execute(RWSet* passedStringTable, RWCString passedHostID,
FrGrStrManResMonl F* passedStrManResMonl F, FrGrRmsWsRmsl F*
passedFrGrRmsWsRmsl F, RWSet* passedFrGrRmsWsRmsl Fset, FoGnRmsFui | F*
passedFoGnRmsFuil F, FoGNRmMsCsmsl F* passedFoGnRmsCsmsl F)

Thisroutineis responsible for containing all functionality necessary for processing the
request. It calls additional subroutinesin order to accomplish this task.
Protected Functions

EcTint addMirroredW ()

This routine adds a mirrored workstation to a string's mirrored WS list.
EcTInt addTailoredW ()

This routine adds a tailored workstation to a string's tailored WS list.
EcTint addUser ()

Thisroutine adds a user to a string's user list.
EcTInt createParamServer ()

Thisroutine is responsible for creating a Parameter Server

EcTInt createT elemetry()

Thisroutine is responsible for creating a telemetry object. In addition, it notifies the
telemetry object to create a telemetry process.

FrGrTelemetry* findTIm(RWCString passedTImType)
This routine finds a particular telemetry object based on the passedTImType

Private Types

enum myTImType
This member variable identifies the telemetry type

3-113 305-CD-043-001

Enumerators

HEALTH
HOUSE_KEEPING

enum myUser Type
This member variable identifies the type of user

Enumerators

MIRRORED
SHARED
TAILORED
FrGrStringDeleteRequest
class FrGr StringDeleteRequest
This classis responsible for processing a String Delete Request.

Base Classes
public Fr Gr Request

Public Construction
FrGr StringDeleteRequest(const FrGrStringDel eteRequest&)
FrGrStringDel eteRequest(const FrGrStringDel eteRequest&)
This member function creates a duplicate of this class.
FrGrStringDeleteRequest()
This member function is the default constructor for this class.
~FrGr StringDeleteRequest()
This member function is the destructor for this class.

Public Functions

EcTInt execute(RWSet* passedStringTable, RWCString passedHostID,
FrGrStrManResMonl F* passedStrManResMonl F, FrGrRmsWsRmsl F*
passedFrGrRmsWsRmslF, RWSet* passedFrGrRmsWsRmsl Fset, FoGnRmsFui | F*
passedFoGnRmskFuil F, FOGNRmMsCsmsl F* passedFoGnRmMsCsmsl F)

Thisroutine is responsible for containing al functionality necessary for processing the
request. It calls additional subroutinesin order to accomplish this task.
Protected Functions

int deleteCmd(FrGrStrManResMonlF* StrManResMonl F)

This routine will delete the command object associated with a string. The software object
destruction will also delete the command processit is associated with. If necessary, it will

3-114 305-CD-043-001

notify the Resource Monitor Task to stop monitoring the process.
int deleteGsc(FrGrStrManResMonl F* StrManResMonl F)
This routine will delete the Ground Script Controller
object associated with a string.

The software object destruction will also delete the GSC processiit is associated with. It
will notify the Resource Monitor Task to stop monitoring the process.

int deletePar amSer ver (RWCString Host, FrGrStrManResMonl F* StrManResMonl F)
This routine will delete the Parameter Server
object associated with a string.

The software object destruction will also delete the PS processiit is associated with. 1f
necessary, it will notify the Resource Monitor Task to stop monitoring the process.

int deleteRem(FrGrStrManResMonl F* StrManResM onl F)

Thisroutinewill delete the RTContact object associated with a string. The software object
destruction will also delete the RTContact processit isassociated with. If necessary, it will
notify the Resource Monitor Task to stop monitoring the process.

int deleteTIm(RWCString Host, FrGrStrManResMonl F* StrManResM onl F)

Thisroutinewill delete any telemetry objects associated with a string. The software object
destruction will also delete the telemetry processes they are associated with. |f necessary,
it will notify the Resource Monitor Task to stop monitoring the process.

FrGrString* findString(RWSet* PassedStringTable, int PassedStringl D)
This routine finds a particular string in a string table based on the Stringld.

int removeAll(FrGrStrManResMonl F* PassedStrManResM onl F, RWCString
PassedHostI d)

Thisroutinewill call the necessary subroutinesfor del eting software objects and processes.

int removeString(RWSet* PassedStringTable)
This routine will remove a string from the PassedStringTable.

Private Data

EcTInt myStringld
This attribute identifies the string to be deleted.

RWCString myUser 1 d
This attribute identifies the user that generated the request.

RWCString myWksld
This attribute identifies the workstation that generated the request.

3-115 305-CD-043-001

FrGr StringDisconnectRequest
class Fr Gr StringDisconnectRequest
FrGrStringDisconnectRequest:: FrGrStringDisconnectRequest()
This classis used to delete amirrored and tailored telemetry object, delete amirrored or
tailored workstation, or delete a user from the user list.
Base Classes

private Fr Gr StringAccessRequest

Public Construction
FrGr StringDisconnectRequest()
This routine creates an instance of this class.
~FrGr StringDisconnectRequest()
This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)
Thisroutineis responsible for containing all functionality necessary for processing the
request. It calls additional subroutinesin order to accomplish this task.

Protected Functions
EcTInt removeAllTImM(RWCString passedTImType)
Thisroutine removes al telemetry processes associated with a
particular string off of aworkstation.
EcTInt removeParamServer ()

This routine removes the Parameter Server process associated with a particular string off
of aworkstation.

EcTInt removeUser ()

This routine removes the Userld from a string's Userld list.
EcTInt removeUser Station()

This routine removes the Wksld from a string's UserStation list.

FrGrStringFailover Request
class Fr Gr StringFailover Request
This classisresponsible for processing a String Failover Request.

3-116 305-CD-043-001

Base Classes
public FrGrRequest

Public Construction
FrGr StringFailover Request(const FrGrServiceRequest&)
This routine creates a duplicate of this class.
FrGr StringFailover Request()
This routine creates an instance of this class.
~Fr Gr StringFailover Request()
This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)
This member function is responsible for processing this particular request.

Protected Functions

EcTInt DeactivateT elemetry()

This member function will initiate changing Telemetry's state from active to backup.
EcTInt activateCommand()

This member function will initiate changing Command's state from backup to active.
EcTInt activateRT Contact()

This member function will initiate changing RT Contact's state from backup to active.
EcTInt activateT elemetry()

This member function will initiate changing Telemetry's state from backup to active.
EcTInt deactivateCommand()

This member function will initiate changing Command's state from active to backup.
EcTInt deactivateRT Contact()

This member function will initiate changing RT Contact's state from active to backup.
FrGrString* findString(FrGrStringTable* PassedStringTable, int PassedStringl D)

Thismember function will find aparticular string within the string table based on its string
ID.

FrGrTelemetry* findTIm(RWCString passedTImType)
This member function will find a FrGrTelemetry object based on its type.

3-117 305-CD-043-001

Private Data

RWCString myActionFlag

Thismember variableidentifieswhether the RTS needsto Activate or deactivate processes.
EcTIint myBackupRTSid

This member variable contains the RTSid to be failed over to.
EcTint myBackupStringld

This member variable identifies the backup string to be failed over to.
EcTInt myFailedRTSid

This member variable contains the RTSid to be failed over from.
EcTInt myFailedStringl d

This member variable identifies the failed string to be failed over from.
RWCString myUserid

This member variable containsthe id of the user
RWCString myWksid

This member variable contains the id of the Workstation

FrGrStringStateUpdateRequest
class FrGr StringStateUpdateRequest
This class updates a string's state when its RTS fails.

Base Classes
public FrGrRequest

Public Construction

FrGr StringStateUpdateRequest (const FrGrStringStateUpdateRequest&:)
FrGrStringStateU pdateRequest(const FrGrStringStateUpdateRequest&)
This routine creates a duplicate of this class.

FrGr StringStateUpdateRequest()
This routine creates an instance of this class.

~FrGr StringStateUpdateRequest()
This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)
Thisroutine is responsible for processing this request

3-118 305-CD-043-001

FrGrString* findString(RWSet* PassedStringTable, int PassedStringl D)
Thisroutine will find a string from the PassedStringTable

Private Data
RWCString myNewState
This member variable identifies the new state of the string.
EcTInt myStringld
This member variable identifies the string that will be updated with the new state.

FrGrTableUpdateRequest
class Fr Gr TableUpdateRequest
This class updates the String Table with the String Table subset.

Base Classes
public FrGrRequest

Public Construction

FrGrTableUpdateRequest(const FrGrTableUpdateRequest&)
FrGrTableUpdateRequest(const FrGrTableUpdateRequest&:)
This routine creates a duplicate of this class.

FrGrTableUpdateRequest()
This routine creates an instance of this class.

~FrGrTableUpdateRequest()
This routine deletes an instance of this class.

Public Functions

EcTInt execute(FrGrController* Controller)
Thisroutine is responsible for processing this request

Private Data

RWSet myT ableSubset
This member variable points to the string table subset that the WS String Table will be
updated with.
FrGrTelemetry
class FrGrTelemetry

Thisclassisused to create, destroy, configure and reconfigurethetelemetry (TLM) subsystem.
In addition, it will take a configuration snapshot of the TLM subsystem.

3-119 305-CD-043-001

Base Classes
public Fr Gr Software

Public Construction

FrGrTelemetry(const FrGrTelemetry&)
This member function isa"copy constructor”, it creates a duplicate of this class.

FrGrTelemetry(ECTInt TImType)
FrGrTelemetry(RWCString TImType)
This member function is the default constructor for this class.

FrGrTelemetry()
This member function is the default constructor for this class.

~FrGrTelemetry()

Thismember function isthe destructor for thisclass. 1t will call the FrGrTelemetry::Stop()
member function.

Public Functions

EcTint ChangeState(State)

This member function will change the myState attribute of this class as well as send the
change to the TLM processes.

EcTInt Config(RWCString DiagnosticFile, RWCString HK DecommFile, RWCString
HSDecommFile, RWCString SBDecommFile)

Config(RWCString DiagnosticFile, RWCString HK DecommFile,
RWCString HSDecommFile, RWCString SBDecommpFile)

This member function calls the MakeRmsA ddress subroutine before calling the TLM
StartTImProcess() These operations will start and configure the corresponding TLM
processes.

void Config(void)

This member function calls the MakeRmsA ddress member function before calling TLM
StartTImProcess() These operations will start and configure the corresponding TLM
processes.

EcTInt Reconfig(RWCString configParameters)

This member function will determine which TLM process will receive a configuration
parameter and call the appropriate TLM ReconfigTImProcess(RWCString configParam)
member function

EcTInt Snap(void)

This member function will notify one of the TLM processes to take a configuration
snapshot of their corresponding processes and update their mySnapFilename attribute.

3-120 305-CD-043-001

EcTInt Stop(void)
This member function will call FrGrDiagnostic::StopDiagnostic()

Protected Functions

EcTInt MakeRmsAddress(void)
This member function will set the myRmsAddress attribute which
will be used to start the TLM processes.

Private Data
FrGrTelemetryProcess* myDiagnostic
This member variable points to the Diagnostic object.
Address* myDmsAddress

This member variable identifies the address of the DM S process that the TLM processes
will communicate with.

FrGrTelemetryProcess* myHK Decomm

This member variable points to the HK Decomm object.
FrGrTelemetryProcess* myHSDecomm

This member variable points to the HS Decomm object.
FrGrTelemetryProcess* mySBDecomm

This member variable points to the SB Decomm object.
FrGrTelemetryProcess* myStateCheck

This member variable points to the State Check process object.
EcTInt myTImType

This member variable contains the type of telemetry processis being executed.

FrGrTelemetryProcess
class Fr Gr TelemetryProcess

This class us used to create, destroy, configure and reconfigure any of the potential telemetry
processes, i.e. Dump, StandBy, Housekeeping or Health & Safety. It will also take a
configuration snapshot of any of the aforementioned processes.

Base Classes
public FrGrTelemetry

Public Construction

FrGrTelemetryProcess(const FrGrTelemetryProcess&)
This member function isa"copy constructor”, it creates a duplicate of this class.

3-121 305-CD-043-001

FrGrTelemetryProcess(RWCString myDbid, RWCString myScid, myState, Address*
myRmsA ddress)

This member function is the default constructor for this class.

~FrGrTelemetryProcess()
This member function is the destructor for thisclass. It will call the

FrGrTelemetryProcess::StopTImProcess() member function.
Public Functions

EcTInt ConfigTImProcess()

This member function sends configuration information to the FrGrTelemetryProcess
process after it has been started.

EcTInt ReconfigT ImProcess(RWCString configParameter)
Thismember function sends areconfiguration parameter to the specified telemetry process.

EcTInt SnapConfigTImProcess(RWCString ConfigFile)

This member function sends snapshot configuration information to atelemetry process
after it has been started.

EcTInt SnapTImProcess(void)

This member function requests a configuration snapshot of the FrGrTelemetyProcess
process and updates the mySnapFilename attribute.

EcTInt StartTImProcess()
This member function will create atelemetry process of one of the following telemetry

types: Dump, StandBy, Housekeeping or Health & Safety.
Protected Functions

EcTInt StopTImProcess(void)
This member function will terminate a FrGrTelemetryProcess process.

Private Data
FrGrDataArchiver* myDataAr chiver
This member variable points to the FrGrDataArchiver object
RWCString myDbld

This member variable is the database identifier which is to be used by this process for the
extraction of database information.

FTIDumpConfig* myDumpConfig
This member variable points to the Telemetry Dump Proxy.

FrGrTelemetry* myFrGrTelemetry
This member variable points to the FrGrTelemetry object that this object is part of .

3-122 305-CD-043-001

RWCString myProcessType

This member variable identifies whether the Telemetry Processisto process
Housekeeping, Health& Safety, Standby, Diagnostic, or State Checking.

Address* myRmsAddress
This member variable points to the address of the RM S address.
RWCString myScld
Thismember variableistheidentifier of the space craft of which this processis supporting.
RWCString mySnapFilename
This member variable identifies a snapshot configuration filename.
FtTITelemetryConfig* myTelemetryConfig
This member variable points to the Telemetry proxy.
EcTInt myTImPid
This member variable identifies the telemetry processes, Pid

FrGrWsRmsRequestProxy
class Fr Gr WsRmsRequest Pr oxy
This class enablesaWS RM S to send Requests to the RTS RMS.

Public Functions

EcTInt I nitialize(FrGrController* Controller, RWCString Rtsld)

This member function will establish a connection with the RTS RM S subsystem. It will
create a Request Queue as well.

EcTInt ReceiveStatus(FrGrRequest* Request)

This member function will receive a status on the passed Request.
EcTInt SendRequest(FrGrRequest* Request)

This member function will send a Request to the RTS RMS.

Private Data
Address* myRtsRmsAddress
This member variable identifies the Address of the RTS RMS String Manager process.

XDR myXDR
This member variable identifies the XDR stream to which a message/object will be passed

3.3 RMS Resource Monitor Component

The Resource Monitor Component provides the Resource Management Subsystem's monitoring
service for critical EOC resources. The Resource Management Subsystem Resource Monitor
Component is designed to be installed and executed only on the Real-Time Servers within the

3-123 305-CD-043-001

EOC. Therole of the Resource Monitor is much the same from server to server and is dependent
upon requests from the String Manager component that is co-located.

3.3.1 RMS Resource Monitor Component Context

The RMS Resource Monitor Component receives and responds to requests for hardware and
software component monitoring from the RMS String Manager Component. The requests are for
starting, stopping and modifying the monitoring from one component to another as the mission
critical components change with the operating environment. Asthese operating conditions change
(e.0. logical strings are created and deleted) and are reported by the String Manager, the changes
in monitoring needs are relayed to the CSMS/M SS monitoring service by the Resource Monitor.
The Resource Monitor registers interests in newly created software components and terminates
interests in deleted software components. Hardware components are monitored automatically by
CSMS/MSS.

Receiving notice of changed hardware and software component status's is more complex. When
the status of a mission critical hardware or software component changes, a management event is
generated by the CSMS/M SS Monitoring Service. The event isreported to the Data M anagement
Subsystem where it is determined that the incoming event is of a type that the RMS Resource
Monitor is interested. The DMS uses a Paramater Server interface class to trandate the event
information into a component status and report that status to the Parmeter Server. Interest in
certain hardware and software status parameters is registered by the Resource Monitor process.
Again, this depends on which hardware and software components are considered mission critical
at a given time. When a failure status is received by the Resource Monitor process an event
indicating amission critical component failure will be generated.

3-124 305-CD-043-001

GQcl-€

T00-€E¥0-dD-S0E

FoGnCsmslF

myNameServer : Directory_Naming_Service®
myEcsSecurity : ECSSecurity”
mySoftwareRegister : SoftwareRegister*

T UmegsterSw(EeTin Pd) < EcTint
+ RegisterSw(ECTInt Pid) : EcTint
+ CheckUserAuthorization(RWCSting Userld, RWCSting Role) EcTi
+ CheckHwAulhorization(RWCSring Hid, RWCString Role) EcTint
+ QueryRole() :RWCSting
+ CountRis() :EcTint
created by
FrGrMoniorContoller
T myCueniRequest - FrGiontorRequest
- myHwhonitorSet : RWSet:
FdEVEventLogger | useany—| - myswMoniorset : Rwser
myFoGRCsmSIF : FoGnCsmslE*

- myFIGIStManResMonlF : FrGrSrManResMoniF*
- myParameterMonitor : ParameterMonitor*
- myHwMonitor : FrGrHardwareMonitor*

‘GenEvent(RWCString* msg)

- myFdEvEveniLogger : FdEVEveniLogger otied by
+ Initalize() :EcTint
+ Run
+ ReceveStatus(UserParameter” Status) : EcTint [
+ EcT)
+ CrealeFoGnCsmsIF() : EcTint ~ myAddress : RWCSting
+ CreateHwMoniorSet) - EcTint - myParameterTable : RWHashDictionary
+ CreateSwhonitorSet) : EcTint
created by N hwid) + RegisterClient(Cid Address Mode, PidList) EcTi
+ pid) + Updatelnterests(Cid PidList) - EcTint
+ CrealeFiGrSuManResMonlF() : EcTint + UnregisterClient(Cid) : EcTVoid
+ CreateParameterMonitor) EcTint + UpdateParameters(PidBufier) : EcTVoid
+ CreateFrGrRisMonitors) : EcTint
+ CrealeFdEVEventLogger) : EcTint
ParameterMonitor Adds =
creates Parameters RWSet
creates ~ myParameters : Container * To
- mysciD - sting
FrorSuManResMonF + ParameterMonitor)
+ ~Parameterhonitor(
myEventLogger _: FdEVEventLogger- + i
- myRequesiQueve : RWSet* ChecksStatusin + RegisterParameters(Container *)
- myStManaddress : Address* + RegisterParameter(Parameter)
+ DeleteParameters(Container *)
+ Initalize(FrGrContioler” Controller) - EcTint + DeleteParameter(Parameter)
+ CheckQueue() - FrGrMonitorRequest® .
+ ReceiveRequest(FrGrMonitorRequest* newReques!) EcTin RWSet + DoAllSampls
+ SendStatus(FIGMMonilorRequest* sentRequest) EcTint — iterates over + GeCurentvalue(Parameter)
o .
P received by mySwMoniorSet | + CalculateParameterTime()
iterated ovef by]
Updat
creates FrGrResourceMonitor B Updaes
[pr— UserParameter
w creates T myStaws - UserParhmetert
updates Jonitors.
i + GetStaws() : RWCPtring
RWSet FrGrMonitorRequest | T
Redquest Queue see Fgures 33323
FIGrSuManResMonProxy
- sends.
~ myxDR :XOR
- myResMonAddress : Address*
+ Initalize(FrGrController Controller) : EcTint
+ SendRequesi(FrGrMonitorRequest” Request) EcTinf [FrGrHardwareMonitor FrGrSoftwareMonitor
. Request)
~ myHwid - RWCS e EeTt
myStringld: RWCString

- mySwSubsystemName : RWqString

FrGrUsMonitor

FrGrRisMonitor

~ myStingld _: RWestring
- myRole : RWCStfng

Figure 3.3.1-1. RMS Resource Monitor Component Context Diagram

3.3.2 RMS Resource Monitor Component Interfaces

Table 3.3.2 RMS Resource Monitor Component Interfaces

Interface Service | Interface | Interface Class | Service Provider Service Frequency
Class Description User
RTS RMS to FrGrStr Enablesthe RTS | RMS RTS 30 - 100 per
Resource Monitor | ManRes RMS to send Resource RMS contact
Interface MonProxy requests to Monitor
Resource
Monitor
Un/Registering of | FoGnCsms | Enables RMS to
SW and querying |IF interface with the
the name server name server CSMS RMS 24 - 80 per
contact
Gets and Sets FoPsClient | Enables RMS to
parameters from/ | |F interface with PS PS RMS 30 - 100 per
to PS contact
Reads requests FrGrStr Enables the
sent by the RMS | ManRes RMS Resource RMS RMS 30 - 100 per
String Mgr. MonlE Monitor to read Resource |contact
requests from Monitor
the String Mgr.
Sends event FdEvEventL | Enables RMS to 1 per SWor
messages to ogger log event DMS RMS HWfailure
event logger messages

3.3.3 RMS Resource Monitor Component Object Model

Figure 3.3.3-1 illustrates atop level view of the RM 'S Resource Monitor Component. Subsequent
Figures illustrate, in more detail, the FrGrMonitorRequest object. The objects shown on Figure
3.3.3-1 allow the RM Sto collect status on software and hardware, register softwarewiththe CSMS
name server, and generate events when afailure statusis received.

The RWSet object is a Rogue Wave Collection Class that is used to store other RMS Resource
Monitor objects. Thisincludes Hardware and Software Monitor objects, User Parameter objects,
and Monitor Request objects.

There are several "proxy" and "receiver" objects that appear on the diagram. The
FrGrStrManResM onProxy object appears on the diagram for clarity. It residesinthe RMS String
Manager process and enables the String Manager to send MonitorRequests to Resource Monitor.
The MonitorRequests are received by the FrGrStrManResM onl F object and placed into a queue.
The queue is represented by a RWSet. When the Controller object invokes CheckQueue within
the FrGrStrManResMonProxys, it retrieves a MonitorRequest object from the queue and returns it
tothe Controller. The FrGrStrManResMonl F will send arequest status back to the String Manager
when notified by the Controller. The FdEvVEventLogger enables the Resource Monitor to send

3-126 305-CD-043-001

eventsto DMS. The FoGnCsmslF object enables the Resource Monitor to register and unregister
software processes with the CSMS name server. The FoPsClientl F allows the Resource Monitor
to receive status information on hardware and software from the Parameter Server.

There are three types of Monitors within the Resource Monitor. The FrGrRtsMonitor is derived
from the FrGrHardwareMonitor and stores the status of the RTS. The FrGrUsMonitor is derived
from the FrGrHardwareM onitor and stores the status of the userstations. In addition, it tracks the
string associated with auserstation and what type of role the userstation playswithinthe EOC. The
role could be Ground Control or Command Authority. The FrGrSoftwareMonitor is derived from
the FrGrResourceMonitor and stores a Process D, the ID of the String that the process bel ongs to,
and a Software Subsystem Name. The Software Subsystem Name could be Telemetry, Command,
RTContact, Ground Script Controller, Parameter Server, or Data Archiver. The
FrGrHardwareM onitor object is derived from the FrGrResourceM onitor object and merely serves
asageneralization of the FrGrRtsMonitor and the FrGrUsMonitor. It isan abstract class that only
contains a Hwld as an attribute. The FrGrResourceMonitor is an abstract class that serves as a
generalization of all of the Monitor objects needed by the Resource Monitor.

The FrGrMonitorRequest object is an abstract class that contains a virtual Execute operation.
Several Request objects are derived from the FrGrM onitorRequest object and each will overwrite
the Execute operation. The Execute operation is called by the FrGrMonitorController object and
isresponsible for containing all functionality or calling any subroutines necessary for processing a
particular request. The classes derived from the FrGrMonitorRequest object are shown in more
detail in Figure 3.3.3-2 and Figure 3.3.3-3.

The ParameterMonitor object receives User Parameters through the FoPsClientl F and notifies the
FrGrMonitorController of a change in the Parameter's value.

The FrGrMonitorController object enables the Resource Monitor to initialize itself, communicate
with other processes, and initiate the processing of requests. At initidization, the
FrGrMonitorController creates the appropriate "proxy” and "receiver” objects. In addition, it
creates collection classes and FrGrRtsMonitor objects for every RTS, except for the RTS that this
particular Resource Monitor resides on. Oncethe Controller hasinitialized, it entersa"run" state.
In this state, the Controller will notify requests to execute as they are received from the String
Manager. When afailure status is received from the Parameter Server, an event is sent to DMS.

3-127 305-CD-043-001

8¢1-€

T00-€E¥0-dD-S0E

FoGnCsmsIF

~ myNameServer _: Directory_Naming_Service"
- myEcsSecurity : ECSSecurity*
- mySoftwareRegister : SoftwareRegister*

+ UnregisterSw(EcTInt Pid) - EcTint
+ RegisterSw(EcTInt Pid) : EcTint
+ CheckUserAuthorization(RWCSting Userld, RWCString Role) EcTl
+ CheckHwAuthorization(RWCString Hwld, RWCSting Role) EcTint
+ QueryRole() : RWCString
+ CountRts() : EcTint
created by
FrGrMonitorController
1l - myCurrentRequest - FrGrMonitorRequest*

- myHwMonitorSet : RWSet*
- mySwMonitorSet : RWSett

myFoGnCsmsiF : FoGnCsmsIF*
- myFIGrStManResMonlF : FrGrStiManResMoniF*
myParameterMonitor : ParameterMonitor*
myHwMonitor : FrGrHardwareMonitor*
mySwMonitor : FrGrSoftwareMonitor*
myFdEvEventLogger : FAEVEventLogger*

FdEVEventLogger | wea oy |

‘GenEvent(RWCString msg)

notied by
+ Initalize) - EcTint
+ Run) :EcTin
+ ReceiveStatus(UserParameter* Staius) : EcTint P
B EcT
+ CreateFoGnCsmsiF() : EcTint ~ myAddress - RWCSting
+ CreateHwMonitorSel() : EcTint - myParameterTable : RWHashDictionary
+ CreateSwMonitorSet) : EcTint
created by N g + RegisterClieni(Cid.Address Mode PidLis) - EcTl
N + Updatelnteresis(Cid,PidList) : EcTint
+ CreatoFrGiSiManResMonlF() EcTint + UnregisterClient(Cid) : EcTVoi
+ CreateParameterMonitor) - EcTint + UpdateParameters(PidBuffer) : EcTVoid
+ CreateFrGiRisMoniors() : EcTint
+ CreateFdEvEventLogger) - EcTint
ParameterMonitor Adds °
crestes Parameters RWSet
creates. - myParameters : Container * To
- myscD : Sting
FrGrSuManResNoniF " Parametemionitor)
+ ~ParameterMonitor()
~ myEveniLogger - FAEvEveniLogger - i
- myRequestQueue : RWSet ChecksStatusin + RegisterParameters(Container *)
- myStManAddress - Address* + RegisterParameter(Parameter)
+ DeleteParameters(Container *)
+ Intalize(FrGrController Controller) - EcTInt + DeleteParameter(Parameter)
. FrGrMonitorRequest* i
+ ReceiveRequesi(FrGrMonitorRequest” newRequest) EcTin RWSet + DoAlSamples)
+ SendStatus(FrGrMonitorRequest* sentReques!) EcTint — iterates over + GetCurentvalue(Parameter)
. .
v received by mySwMoniorSet | + CaleulateParameterTime()
iterated ovef by (]
retes P Resmraoor [LIIEE
” UserParameter
myHuMonitorset l—maws ~ myStats : UserPafmeter
updates onitors
e I8 T Getsmus) RWChtring
RwsSet FrGrMonitorRequest L T
o
Request Queue see Figures 33323
FrorStManResMonProxy
|- sends
~ myxdR 1 XOR
- myResMonAddress : Address*
+ Initialize(FrGrController Controller) - EcTint gl
+ SendReques!(FrGrMonitorRequest Request) ectinf [FreHardwareMonitor FrGrSaftwareMoniior
+ ReceiveStatus(FrGrMonitorRequest* Reques!) EcTife
T myrid_ RWCS TP EcTi
- myStingld : RWCString

- mySwSubsystemName : RW(String

FrGrusMonitor

FrGrRisMonitor

~ myStingld_: RW§String
- myRole :RWCStfng

Figure 3.3.3-1. RMS Resource Monitor Component Object Model

6¢1-€

T00-E0-AD-S0E

==

FrGrMonitorRequest

+ Execute(FrGrMonitorController* Controller)EcT|nt

/N

=

FrGrUsMonitorRequest

- myHwld : RWCString
- myUsMonitor: FrGrUsMonitor*

+ FindUsMonitor(FrGrMonitorController* PassedControllerfFrGrUsMonitor*

== ==
FrGrStopMonitorUsRequest FrGrMonitorUsRequest
- myStringld : RWCString
+ DeleteUsMonitor(): EcTInt - myRole : RWCString
+ Execute(FrGrMonitorController* Controller)EcTInt
+ CreateUsMonitor(): FrGrUsMonitor*
+ Execute(FrGrMonitorController* Controller)EcTInt

g

FrGrSwitchMonitorUsRequest

- myNewHwld : RWCString
- myRole : RWCString
- myStringld : RWCString

+ Execute(FrGrController* Controller) EcT|nt

Figure 3.3.3-2. RMS Resource Monitor Component FrGrUsMonitorRequest Object Model

The FrGrUsMonitorRequest object is derived from the FrGrMonitorRequest object.
FrGrMonitorRequest is an abstract class that contains an Execute operation that derived classes
will inherit. FrGrUsMonitorRequest contains additional attributes and a FindUsM onitor operation
that derived objects will inherit. The FrGrStopMonitorUsRequest object contains attributes and
operations necessary for terminating the monitoring of a userstation. It will delete the
FrGrUsMonitor object as well as notify the Parameter Server that there is no longer an interest in
the userstation status. This would occur when a string is deleted from the RTS. The
FrGrMonitorUsRequest object contains attributes and operations necessary for initiating the
monitoring of auserstation. It will create the FrGrUsMonitor object aswell asnotify the Parameter
Server that there an interest in the userstation status. Thiswould occur when a string is created on
the RTS. The FrGrSwitchMonitorUsRequest contains attributes and operations necessary to
terminate the monitoring of one userstation and initiate the monitoring of another. It uses a
FrGrUsMonitor object that has been already created, notifies the Parameter Server that thereisno
longer an interest in a particular userstation, and notifies it of a new interest in a different
userstation. Thiswould occur when the Ground Control or Command Authority user changes.

The FrGrSwMonitorRequest object is derived from the FrGrMonitorRequest object.
FrGrMonitorRequest is an abstract class that contains an Execute operation that derived classes
will inherit. FrGrSwM onitorRequest contains additional attributesthat derived objectswill inherit.
The FrGrStopMonitorSwRequest object contains operations necessary for terminating the
monitoring of a software process. It will delete the FrGrSoftwareMonitor object, notify the
Parameter Server that there is no longer an interest in the software status, and notify CSMS to
discontinue monitoring of the software process. This can occur when a string is deleted from the
RTS. The FrGrMonitorSwRequest object contains attributes and operations necessary for
initiating the monitoring of a software process. It will create the FrGrSoftwareMonitor object,
notify the Parameter Server that thereisan interest in the software status, and notify CSM Sto begin
monitoring the software process. This can occur when astring is created.

3.3.4 RMS Resource Monitor Component Dynamic Model

The following are the RMS Resource Monitor Component scenarios which are defined in this
section.

* Request for Software Monitoring is Received by the Resource Monitor

* Request for User Station Monitoring is Received by the Resource Monitor

* Request to Switch User Station Monitoring is Received by the Resource Monitor

» Falled Hardware Status from the Parameter Server is Received by the Resource Monitor

3.3.4.1 Request for Software Monitoring is Received by the Resource Monitor
Scenario

3.3.4.1.1 Request for Software Monitoring is Received by the Resource Monitor
Abstract

The purpose of the Request for Software Monitoring is Received by the Resource Monitor scenario
is to describe how the RMS Resource Monitor component acts upon a request for a software
process to be monitored by the SCDO MSS Monitoring Service.

3-130 305-CD-043-001

TET-€

T00-E0-AD-S0E

==

FrGrMonitorRequest

+

Execute(FrGrMonitorController* Controller) : EcTInt

FrGrSwMonitorRequest

- myStringld : RWCString
- mySwMonitor : FrGrSoftwareMonitor*

- myPid : EcTInt
== =22
FrGrStopMonitorSwRequest FrGrMonitorSwRequest
- mySwSubName : RWCString
+ DeleteSwMonitor(FrGrMonitorController* PassedController) : EcTInt - myStringld : RWCString
+ FindSwMonitor(FrGrMonitorController* PassedController) : FrGrSoftwareMonitar*
+ Execute(FrGrMonitorController* Controller) : EcTInt FindSwMonitor(FrGrMonitorController* PassedController) : FrGrSoftwareMonitor*

CreateSwMonitor() : FrGrSoftwareMonitor*
Execute(FrGrMonitorController* Controller) : EcTInt

+

Figure 3.3.3-3. RMS Resource Monitor Component FrGrSwMonitorRequest Object Model

3.3.4.1.2 Request for Software Monitoring is Received by the Resource Monitor
Summary Information
Interfaces:
SCDO/MSS Monitoring Service
Parameter Server
Stimulus:

The String Manager sends a FrGrMonitorSwRequest object to the Resource Monitor for
processing.
Desired Response:

CSMS will be notified of a new software process to monitor and the Parameter Server will be
notified to begin sending the Resource Monitor a status on the software process.

Pre-Conditions:
A software process has been created by the String Manager.
Post-Conditions:

The Resource Monitor is capable of receiving a software status from the Parameter Server and
send an event if a software failure occurs.

3.3.4.1.3 Scenario Description

The Controller checks the queue of the FrGrStrManResMonlF and a FrGrMonitorSwRequest is
returned. The MonitorController invokes the FrGrM onitorSwRequest object's Execute operation.
A SwMonitor search is performed and a FrGrSoftwareMonitor object is not found. A
FrGrSoftwareMonitor object is created and added to the SwMonitorSet. MSS is notified of the
new software process and the Parameter Server is notified to send Resource Monitor the status of
the new process. The Request is deleted and the String Manager is notified that the Request has
been executed.

3.3.4.1.4 State Transition Description

3.3.4.2 Request for User Station Monitoring is Received by the Resource Monitor
Scenario

3.3.4.2.1 Request for User Station Monitoring is Received by the Resource Monitor
Abstract

The purpose of the Request for User Station Monitoring is Received by the Resource Monitor
scenario is to describe how the RMS Resource Monitor component acts upon a request for a
particular User Workstation to be monitored by the SCDO M SS Monitoring Service.

3-132 305-CD-043-001

3.3.4.2.2 Request for User Station Monitoring is Received by the Resource Monitor
Summary Information
Interfaces:
Parameter Server
Stimulus:

The String Manager grants Command Authority and sends a FrGrMonitorUsRequest to the
Resource Monitor for processing.

Desired Response:

The Parameter Server will be notified to begin sending the Resource Monitor a status on the
user station.

Pre-Conditions:
Command Authority has been granted on a particular userstation
Post-Conditions:

The Resource Monitor is capable of receiving ahardware status from the Parameter Server and
send an event if auserstation failure occurs.

3.3.4.2.3 Scenario Description

The Controller checks the queue of the FrGrStrManResMonlF and a FrGrMonitorUsRequest is
returned. The MonitorController invokes the FrGrMonitorUsRequest object's Execute operation.
A UsMonitor search is performed and a FrGrUsMonitor object is not found. A FrGrUsMonitor
object is created and added to the HwMonitorSet. The Parameter Server is notified to send
Resource Monitor the status of the user station. The Request is deleted and the String Manager is
notified that the Request has been executed.

3-133 305-CD-043-001

VET-E

T00-E0-AD-S0E

RWSet FrGrStrManResMonlF FrGrMonitorSwRequest FrGrMonitorController RWSet FrGrSoftwareMonitor
<&——checkQueue
< E
Return Request——mMMMM >
<< Execute
Find SwMonitqr————>>
[<&<——SWNMonitor Not Found
Create [SWMonitor >
Add SwMonitgf —————>>
Notify MSS of New BW Process
Notify Parameter Server of Stafus Interest
——Request Executed—>>|
<&——Delete Request:
<< Returh Statu

FoGnCsmsIF

ParameterMonitor

Figure 3.3.4.1.4-1. Request for Software Monitoring is Received by the Resource Monitor Event Trace

GET-€

T00-E0-AD-S0E

RWSet FrGrStrManResMonlIF FrGrMonitorUsRequest FrGrMonitorController ~ RWSet
<< checkQueue
< Fomoueue]
ReturnRequest >>
<< Execute
Find UsMonitof —————>>
[<<———UsMonitor Not Found
Create| UsMonitor >>
Add UsMonitof ————>>1
Notify Parameter Server pf Status Interest
——Request Executed —=>
<&<——Delete Request
<< Return Status

FrGrUsMonitor

ParameterMonitor

uondiosaq uonisuel] arIsS ¥'ZY¥ee

Figure 3.3.4.2.4-1. Request for User Station Monitoring is Received by the Resource Monitor Event Trace

3.3.4.3 Request to Switch User Station Monitoring is Received by the Resource
Monitor Scenario

3.3.4.3.1 Request to Switch User Station Monitoring is Received by the Resource
Monitor Abstract

The purpose of the Request to Switch User Station Monitoring is Recelved by the Resource
Monitor scenario isto describe how the RM S Resource Monitor component acts upon receipt of a
request to change the User Station monitoring that is provided by the SCDO MSS Monitoring

Service. Thisessentialy resultsin the RM S Resource Monitor terminating itsinterest in the status
of one User Station in favor of interest in another User Station.

3.3.4.3.2 Request to Switch User Station Monitoring is Received by the Resource
Monitor Summary Information
Interfaces:
Parameter Server
Stimulus:

The String Manager changes Command Authority and sends a FrGrSwitchM onitorUsRequest
to the Resource Monitor for processing.

Desired Response:

The Parameter Server will be notified to discontinue sending the status on one userstation and
begin sending the Resource Monitor a status on a different user station.

Pre-Conditions:

A different user has been granted Command Authority on a particular string and a different
userstation will need to be monitored.

Post-Conditions:

The Resource Monitor is capable of receiving a hardware status from the Parameter Server on
adifferent userstation and send an event if a userstation failure occurs.

3.3.4.3.3 Scenario Description

The Controller checks the queue of the FrGrSirManResMonlF and a
FrGrSwitchMonitorUsRequest is returned. The MonitorController invokes the
FrGrSwitchMonitorUsRequest object's Execute operation. A UsMonitor search is performed and
a FrGrUsMonitor object is found. The Parameter Server is notified to stop sending Resource
Monitor the status of the old user station. The FrGrUsMonitor's Hwld is changed and the
Parameter Server isnotified to start sending the Resource Monitor the new user station status. The
Request is deleted and the String Manager is notified that the Request has been executed.

3-136 305-CD-043-001

LET-E

T00-E0-AD-S0E

RWSet

<

FrGrStrManResMonlIF

FrGrSwitchMonitorUsRequest

Queue

equest >
<<——Execute ————

Find UsMonito

Notify Parameter §

l<&——— UsMonitor Fopnd

FrGrMonitorController RWSet

H

erver of Status Int

Change Hwlid

brest ——— >

ParameterMonitor

FrGrUsMonitor

uonduosaq uonisuel] arlsS Y'Y EE

<< check
GetRequest
FromQueue
Return R
<< Retur

Figure 3.3.4.3.4-1. Request to Switch User Station Monitoring is Received

Notify Parameter S

—— Request Executed —>>

I<<—— Delete Request

Status

erver of Status Inti

prest —— >

by the Resource Monitor Event Trace

3.3.4.4 Failed Hardware Status from the Parameter Server is Received by the
Resource Monitor Scenario

3.3.4.4.1 Failed Hardware Status from the Parameter Server is Received by the
Resource Monitor Abstract

The purpose of the Failed Hardware Status from the Parameter Server is Received by the Resource
Monitor scenario isto describe how the RM S Resource Monitor component acts upon notification
from the Parameter Server that a hardware component has failed. The Parameter Server receives
information about the registered components status Sviaaproxy that is provided to the DMS Event
Handler. The DMS Event Handler receives management events including changes in hardware
component status from the SCDO M SS Monitoring Service.

3.3.4.4.2 Failed Hardware Status from the Parameter Server is Received by the
Resource Monitor Summary Information
Interfaces:

Data Management Subsystem

Parameter Server
Stimulus:

The RM S Resource Monitor receivesa FAILED HW Status from the Parameter Server.
Desired Response:

The RMS software will receive a HW failure status from the Parameter Server and send an
event that aRTS hasfailed.

Pre-Conditions:

CSMS detects a RTS failure and notifies DMS. DM S will notify the Parameter Server of the
status.

Post-Conditions:

Users will be notified that a RTS failure has occurred and appropriate failover actions can be
taken.

3.3.4.4.3 Scenario Description

The ParameterMonitor object receives a HW Status from the Parameter Server. The
MonitorController is notified of the status and determines that the status indicates a HW failure.
The HwMonitor object isretrieved and it is determined that the HwMonitor object is monitoring a
RTS. The FrGrMonitorController will then send a RTS failure event.

3-138 305-CD-043-001

6ET-€

T00-E0-AD-S0E

ParameterMonitor

UserParameter FrGrMonitorController RWSet
—UpdateParameter=—
RecdiveStatus >
Determine Status
Is FAILED
—
Determine Status
Is For HW
%
findHwMonitor——=>
<<——returnHwMonitor
—
Determine HwMonitor
Is A Rts Monitor
%
Send Failed RTS Event——>>

FdEvEventLogger

Figure 3.3.4.4.4-1. Failed Hardware Status from the Parameter Server is Received
by the Resource Monitor Event Trace

uondiosaq uonisuel] arIsS Yy ¥'ee

3.3.5 RMS Resource Monitor Component Data Dictionary

FrGrHardwareMonitor
class FrGrHardwareMonitor
Thisis an abstract base class that is a generalization of the Software and Hardware Monitor
objects.
Base Classes

public Fr Gr Resour ceM onitor

Private Data

RWCString myHwI! d
This attribute identifies the Hwld of a particular piece of hardware.

FrGrMonitor Controller
class FrGrMonitor Controller

This classisresponsible for initializing start-up of the Resource Monitor as well as initiating
the processing of FrGrStatus and FrGrMonitorRequest objects.

Public Functions

EcTInt Initialize(void)

This member function is responsible for establishing interfaces with external subsystems
as well as creating the necessary Collection Objects.

EcTInt ReceiveRequest(FrGrMonitorRequest* receivedRequest)

When arequest is received by the FrGrStrManResMonl F object, this operation isinvoked
from the interface object. It is passed a pointer to the Request object.ECTInt
ReceiveStatus(UserParameter* Status)

When achangein statusisreceived by the ParameterMonitor object, this operation is
invoked. It is passed the UserParameter object.

EcTint Run(void)
'Clj'his member function is responsible for checking the appropriate interfaces for passed
ata.
Protected Functions
EcTint CreateFdEvEventL ogger (void)
This operation creates the FAEVEventL ogger object that will be passed to
the Event Handler whenever a need arises.
EcTInt CreateFoGnCsmsl F(void)
This operation creates the FoGnCsmsl F object and establishes a connection with CSMS.

3-140 305-CD-043-001

EcTInt CreateFr GrStrManResMonl F()

This operation creates the FrGrStrManResM onl F object and establishes a connection with
the String Manager process.

EcTInt CreateHwM onitor Set(void)

This operation creates the collection object that will be used to store the Hardware Monitor
Objects.

EcTInt CreateParameter M onitor (void)

This operation creates the ParameterMonitor object and establishes a connection with the
Parameter Server process.

EcTInt CreateSwM onitor Set(void)

This operation creates the collection object that will be used to store theSoftware Monitor
Objects.

EcTInt FrGrMonitor Controller::CreateFr Gr RtsMonitor s()
CreateFrGrRtsMonitors
This operation will create a FrGrRtsMonitor object for every RTS except for thisRTS at
initialization

FrGrHardwareMonitor* Fr GrM onitor Controller::FindHwM onitor (ECTInt hwid)
FindHwMonitor
This operation finds a particular FrGrHardwareMonitor object based on the passed HwI d.

FrGrSoftwareMonitor* Fr GrMonitor Controller::FindSwM onitor (EcTInt
pid)FindSwMonitor

This operation finds a particular FrGrSoftwareM onitor object based on the passed PID.

Private Data

FrGrMonitorRequest* myCurrentRequest

This attribute points to a FrGrMonitorRequest object
FdEvEventLogger* myFdEVEventL ogger

This attribute points to the FAEvVEventL ogger object.
FoGnCsmslF* myFoGnCsmsl F

This attribute points to the FOGnCsmsl F object.
FrGrStrManResMonlF* myFr Gr StrManResM onl F

This attribute points to the FrGrStrManResMonl F object. This object will facilitate an
interface with the RTS String Manager process.

FrGrHardwareMonitor* myHwM onitor
This attribute points to a FrGrHardwareMonitor object

3-141 305-CD-043-001

RWSet* myHwM onitor Set
This attribute identifies the RWSet that contains the Hardware Monitor objects.
ParameterMonitor* myPar ameter M onitor
This attribute points to the ParameterMonitor object.
FrGrSoftwareMonitor* mySwM onitor
This attribute points to a FrGrSoftwareMonitor object
RWSet* mySwM onitor Set
This attribute identifies the RWSet that contains the Software Monitor objects.

FrGrMonitor Request
class Fr GrMonitor Request
This base classis ageneraization of all of the Monitor Requests received from the String
Manager process.
Public Functions
EcTInt Execute(FrGrMonitorController* Controller)
Thisisavirtual operation that ensures every derived class will define its own Execute
operation.
FrGrM onitor SwRequest
class Fr GrMonitor SwRequest
This class represents a request sent from the String Manager process to the Resource Monitor
process to begin monitoring a created software process.
Base Classes

public Fr Gr SwM onitor Request

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)
This member funtion contains all of the functionality needed to process this request.

Protected Functions

FrGrSoftwareMonitor* CreateSwM onitor (void)

This member function is called by the Execute operation and creates the
FrGrSoftwareMonitor.

FrGrSoftwareMonitor* FindSwM onitor (FrGrMonitorController* PassedController)

This member function will find a FrGrSoftwareMonitor object if it has already been
created. Thisensuresthat creation of identical FrGrSoftwareMonitor objects will be
prevented.

3-142 305-CD-043-001

Private Data
RWCString myStringld
This attribute identifies a particular Stringld associated with this request.

RWCString mySwSubName
This attribute identifies a software subsystem associated with a particular process.

FrGrMonitor UsRequest
class Fr GrMonitor UsRequest
This class will process a request from the String Manager to monitor a particular user station.

Base Classes
public Fr GrUsM onitor Request

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)
This member funtion contains all of the functionality needed to process this request.

Protected Functions

FrGrUsMonitor* CreateUsM onitor (void)
This member function is called by the Execute operation and creates the FrGrUsMonitor.

Private Data

RWCString myRole

This attribute identifies whether the User Station is being used for Ground Control or
Commanding purposes.

RWCString myStringld
This attribute identifies a particular Stringld associated with this request.
FrGrResour ceM onitor

class Fr GrResour ceM onitor
This base classis a generalization of all of the Hardware and Software Monitor objects.

Public Functions

RWCString GetStatus()
This operation will retrieve the Status associated with this Monitor object.

Private Data

UserParameter* myStatus
This attribute points to the UserParameter object that contains the status associated with

3-143 305-CD-043-001

this Monitor object.

FrGrRtsMonitor
class Fr GrRtsMonitor
This class contains information on the status of aRTS.

Base Classes
public FrGrHar dwareM onitor

Private Data
RWSet* myActiveStringSet

This attribute points to a RWSet that contains ID's of all of the active strings currently on
aRTS.

RWSet* myBackupStringSet

This attribute points to a RWSet that contains ID's of all of the backup strings currently on
aRTS.

Fr Gr Softwar eM onitor
class Fr Gr SoftwareM onitor
This class contains information on the status of a software process.

Base Classes

public Fr Gr Resour ceM onitor

Private Data
EcTInt myPid
This attribute identifies a PID associated with a FrGrSoftwareM onitor object.
RWCString myStringld
This attribute identifies a string associated with a FrGrSoftwareM onitor object.
RWCString mySwSubsystemName
Thisattributeidentifies asoftware subsystem associated with aparticular process. Thiscan
be Telemetry, RTContact, Command, or Ground Script.
FrGr StopM onitor SwRequest
class Fr Gr StopM onitor SwRequest
This class processes a request from the String Manager to stop monitoring a software process.

3-144 305-CD-043-001

Base Classes
public Fr Gr SwM onitor Request

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)
This member function contains all of the functionality needed to process this request.

Protected Functions

EcTInt DeleteSwM onitor (FrGrMonitorController* PassedController)

This member function is called by the Execute operation and deletes a
FrGrSoftwareMonitor object.

FrGrSoftwareMonitor FindSwM onitor (FrGrMonitorController* PassedController)
This member function will find a FrGrSoftwareMonitor object.

FrGr StopMonitor UsRequest
class Fr Gr StopM onitor UsRequest
This class will process arequest from the String Manager to stop monitoring a userstation.

Base Classes
public FrGrUsM onitor Request

Public Functions

EcTInt Execute(FrGrMonitorController* Controller)
This member function contains all of the functionality needed to process this request.

Protected Functions

EcTInt DeleteUsM onitor (FrGrMonitorController* PassedController)
This member function will delete a UsMonitor object from the PassedController's HwSet.

FrGrStrManResMonl F
class FrGrStrManResM onl F
This classis used to receive messages from the WS/RTS RM S subsystem.

Public Construction

FrGrStrManResM onl F(const FrGrStrManResMonl F&)
FrGrStrManResMonl F(const FrGrStrManResMonl F&)
This member function creates a duplicate of this class.

FrGrStrManResM onl F()
This member function is the default constructor for this class.

3-145 305-CD-043-001

~FrGrStrManResM onl F()
This member function is the destructor for this class.

Public Functions

FrGrMonitorRequest* CheckQueueg()
This member function will return a Request object from the Queue.

EcTInt Initialize(FrGrController* Controller)
This member function will create a Queue for it's Requests. It will set

the String Manager Address as well.

EcTInt ReceiveRequest(FrGrMonitorRequest* newReguest)

receiveRequest

Thismember function will receive a Request from the RTS RM S and put that Request in a
Quevue.

EcTInt SendStatus(FrGrMonitorRequest* sentRequest)
This member function will send a status for the passed Request.

Private Data
FAEvEventL ogger* myEventL ogger
This member variable points to the FAEVEventL ogger.
RWSet* myRequestQueue
This member variable points to the Queue that contains requests.
Address* myStrManAddress
This member variable identifies the Address of the String Manager.

FrGr SwM onitor Request
class Fr Gr SwM onitor Request
Thisclassis an aggregation of the software monitoring requests.

Base Classes
public FrGrMonitor Request

Private Data

EcTInt myPid
This attribute identifies a PID associated with this request.

RWCString myStringld
This attribute identifies a string associated with this request.

3-146 305-CD-043-001

FrGrSoftwareMonitor* mySwM onitor
This attribute points to a FrGrSoftwareMonitor object associated with this request.

FrGr SwitchM onitor UsRequest
class Fr Gr SwitchM onitor UsRequest

This class processes arequest by the String Manager to stop monitoring one userstation and
start monitoring another. Thisis necessary when Ground Control or Command Authority
changes.

Base Classes

public FrGrUsM onitor Request

Public Functions

EcTInt Execute(FrGrController* Controller)
This member function contains all of the functionality needed to process this request.

Private Data
RWCString myNewHw!I d

This attribute identifies the Hwld of the userstation that has taken Ground Control or
Command Authority.

RWCString myRole

This attribute identifies whether the userstations involved have or had Ground Control or
Command Authority.

RWCString myStringld
This attribute identifies the string associated with this request.
FrGrUsMonitor

class FrGrUsMonitor
This class contains information on the status of a userstation.

Base Classes
public Fr GrHar dwar eM onitor

Private Data
RWCString myRole

This attribute identifies whether the userstation is being used for Ground Control or
Command Authority.

RWCString myStringld
This attribute identifies a string associated with a userstation.

3-147 305-CD-043-001

FrGrUsM onitor Request
class Fr GrUsMonitor Request
This classis ageneralization of the requests that affect a FrGrUsMonitor object.

Base Classes
public Fr GrMonitor Request

Protected Functions

FrGrUsMonitor* FindUsM onitor (FrGrMonitorController* PassedController)
This member function will find a FrGrUsMonitor object.

Private Data

RWCString myHwld
This attribute identifies the Hwld of the User Station that is affected by this request.

FrGrUsMonitor* myUsM onitor
This attribute points to a FrGrUsMonitor object associated with this
request.

3.4 Resource Management Subsystem Performance

The most compelling performance requirement that the Resource Management Subsystem must
satisfy is that of failure recovery. According to the Fight Operations Segment (FOS)
Requirements Specification for the ECS Project, Volume 1. Genera Requirements (CDRL
number 304-CD-001-002), the Resource Management Subsystem is required to recover from a
hardware or software component failure within the mission critical processing string within one (1)
minute. The FOS design goal for thisrecovery isthirty (30) seconds.

To satisfy this requirement, the real-time architecture supports the concept of logical strings that
run in a "hot backup® mode in order to facilitate an automated failover from one string of
components to another. This means that the RMS will provide the Flight Operations Team with
the ability to request allocation of hardware and software resources to act in a backup capacity for
like components that are actively supporting a spacecraft contact. The RMS will ensure that the
ground configuration of the active and backup strings is synchronous. If the backup string is
needed, a single user directive entered by an operator with the ground control privilege will begin
thefailover process. From thispoint thefailover isexecuted by the RM S software that ensures that
there is no more that one active logical string supporting the same activity at one time. Thus,
another RM S requirement to ensure "single point of command"” is also satisifed.

Much design discussion was dedicated to the issue of automatic versus automated failover.
Ultimately the requirements support an automated failover procedure that is set in motion by an
operator with privilege within the EOC.

3-148 305-CD-043-001

Abbreviations and Acronyms

AGS ASTER Ground System

AM Morning (ante meridiem) -- see EOS AM

ANA Analysis Subsystem

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

CA Command Authority

CAC Command Activity Controller

CAid Command Authority Identifier

CAwsID Command Authority Workstation Identifier

CCSDS Consultative Committee for Space Data Systems

CERES Clouds and Earth's Radiant Energy System

Cl Configuration item

CLCW Command Link Control Words

CMD Command Subsystem

CMS Command Management System

CODA Customer Operations Data Accounting

COTS Commercial Off-The-Shelf

CSCl Computer software configuration item

CSMS Communications and System Management Segment

CSS Communications Subsystem (CSMS)

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DB Database

Dbld Database | dentifier

DBMS Database Management System

Decomm Decommutation

DFCD Data Format Control Document

DID Data item description; data ingest/distribution

DMS Data Management Subsystem

DSN Deep Space Network

DSS Decision Support System

AB-1 305-CD-043-001

ECL ECS Command Language

ECOM EOS Communications

ECS EOSDIS Core System

EDOS EOS Data and Operations System
EDU EDOS Data Unit

EOC EOS Operations Center

EOS Earth Observing System
EOSDIS EOS Data and Information System
FDF Flight Dynamics Facility

FIFO First In - First Out

FOP Frame Operation Procedure

FOS Flight Operations Segment (ECS)
FOT Flight Operations Team

FSE FOT S/C Evolutions

FUI FOS User Interface Subsystem
GCMR Ground Control Message Request
GSC Ground Script Controller

HK Housekeeping

HS Headlth and Safety

HW Hardware

Hwid Hardware I dentifier

1&T Integration and Test

ICC Instrument Control Center

ID Identifier

IF Interface

IP International Partners

IRD Interface requirements document
IST Instrument Support Toolkit

JPL Jet Propulsion Laboratory

LAN Loca Area Network

LaRC Langley Research Center

LMC L ockheed Martin Corporation
LSM Loca System Manager

LTIP Long Term Instrument Plan
LTSP Long Term Science Plan

MISR Multi-Angle Imaging SpectroRadiometer

AB-2 305-CD-043-001

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS M oderate Resolution Imaging Spectrometer
MOPITT M easurements of Pollution in the Troposphere
MSS CSM S Management Subsystem

MSS Managememt and Subsystem (part of CSMS)
MTPE Mission to Planet Earth

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)
NCC Network Control Center

NOAA National Oceanic and Atmospheric Administration
OASIS Operations and Science Instrument Support
OMT Object Model Technique

OOD Object Oriented Design

PAS Planning and Scheduling

PDB Project Data Base

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Process Identifier

PS Parameter Server Subsystem

RCM Real-Time Contact Management Subsystem
RMA Reliability, Maintainability, Availability
RMS Resource Management Subsystem

RT Real Time

RTCS Relative Time Command Sequence

RTS Real Time Servers, Relative Time Sequence
RW Rogue Wave

RWC Rogue Wave Class

SB Standby

SCC Spacecraft Controls Computer

SCDO Science & Communication Data Operation
SMC Service Management Center

SN Space Network

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

SW Software

AB-3 305-CD-043-001

D Target Day

TDRS Tracking and Data Relay Satellite
TDRSS Tracking and Data Relay Satellite System
TL Team Leader

TLM Telemetry Subsystem

TOO Target of Opportunity

T™W Target Week

Ul User Interface

uTC Universal Time Coordinated
WAN Wide Area Network

WOTS Wallops Orbital Tracking Station
WS Workstation

AB-4 305-CD-043-001

Glossary

activity

analysis

attitude data

availability

GLOSSARY of TERMS for the Flight Operations Segment

A specified amount of scheduled work that has a defined start
date, takes a specific amount of timeto compl ete, and comprises
definable tasks.

Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysisinvolvesthe
processing of accumul ated data obtained from other verification
methods.

Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

» Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler angles or
guaternions, rates and biases, and associated parameters.

* Attitude generated onboard in quaternion or Euler angleform.

* Refined and routine production datarelated to the accuracy or
knowledge of the attitude.

A measure of the degree to which an item isin an operable and
committable state at the start of a "mission” (a requirement to
perform its function) when the "mission" is caled for an
unknown (random) time. (Mathematically, operationa
availability isdefined asthe mean time between failures divided
by the sum of the mean time between failures and the mean
down time [before restoration of function].

GL-1 305-CD-043-001

availability
(inherent) (Aj)

availability
(operational) (Ap)

baseline activity
profile

build

The probability that, when under stated conditions in an ideal
support environment without consideration for preventive
action, a system will operate satisfactorily at any time. The
“ideal support environment” referred to, exists when the
stipulated tools, parts, skilled work force manuals, support
equipment and other support items required are available.
Inherent availability excludes whatever ready time, preventive
maintenance downtime, supply downtime and administrative
downtime may require. Aj can be expressed by the following

formula:

Ai = MTBF/ (MTBF +MTTR)

Where MTBF = Mean Time Between Failures

MTTR = Mean Time To Repair

The probability that a system or equipment, when used under
stated conditions in an actual operational environment, will
operate satisfactorily when called upon. Ag can be expressed

by the following formula:

MTBM /(MTBM + MDT + ST)

Wheree MTBM = Mean Time Between Maintenance (either
corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics
actions are al considered.

ST = Standby Time (or switch over time)
A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating long

term plans (i.e, LTSP, LTIP, and long term spacecraft
operations plan).

An assemblage of threads to produce a gradua buildup of
system capabilities.

GL-2 305-CD-043-001

calibration

command

command
authority

command and
data handling
(C&DH)

command group

data source

dedicated service

The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software
routines, and ground truth data that are to be used in the data
calibration processing routine.

Instruction for action to be carried out by a space-based
instrument or spacecraft.

A privilege or designation bestowed on EOC operatorsto actin
critical roleswithinthe EOC. Command authority isgranted to
one EOC user per command destination for the purpose of
sending real-time commands to a spacecraft. This privilege is
managed within alogical string to ensure that there is a single
point of command for an EOC spacecraft.

The spacecraft command and data handling subsystem which
conveys commands to the spacecraft and research instruments,
collects and formats spacecraft and instrument data, generates
time and frequency references for subsystems and instruments,
and collects and distributes ancillary data.

A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed execution,
but are executed immediately upon reaching their destination
on board. For the U.S. spacecraft, from the perspective of the
EOS Operations Center (EOC), a preplanned command group
Is preprocessed by, and stored at, the EOC in preparation for
later uplink. A real-time command group is unplanned in the
sense that it is not preprocessed and stored by the EOC.

One of five attributes of alogical string that makes it unique.
The data source is an enumerated type that indicates the origin
of the telemetry data being monitored within the logical string
(i.e, real-time, simulation, historical replay)

(aka dedicated logical string)A service dedicated to a single
user whereas resources that reside only on the requesting user's
workstation are employed to provide the requested service.

GL-3 305-CD-043-001

detailed activity
schedules

direct broadcast

EOS Data and
Operations
System

(EDOS)
production data
set

failure recovery

ground control

historical replay
logical string

housekeeping
data

The schedule for a spacecraft and instruments which covers up
to a 10-day period and is generated/updated daily based on the
instrument activity listing for each of the instruments on the
respective spacecraft. For a spacecraft and instrument schedule
the spacecraft subsystem activity specifications needed for
routine spacecraft maintenance and/or for supporting
instruments activities are incorporated in the detailed activity
schedule.

Continuous down-link transmission of selected real-time data
over a broad area (non-specific users).

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission artifacts
removed, in time order, with duplicate data removed, and with
quality/ accounting (Q/A) metadata appended. Time span or
number of packets encompassed in a single data set are
specified by the recipient of the data. These data sets are
equivalent to Level 0 dataformatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual packet
and the data set itself and with essential formatting information
for unambiguous identification and subsequent processing.

The process by which the RM S acts upon an operator request to
transfer active processing and control of an EOS spacecraft
from one string of EOC hardware and software resources to
another.

A privilege or designation that is granted to one EOC user per
logical string for the purpose of modifying the ground
configuration of the hardware and software resources within
that logical string.

A logica string with a data source of the replay type. This
logical string requires the support of only real-time Telemetry
processes for the purpose of decommutating the historical data.

The subset of engineering datarequired for mission and science
operations. These include health and safety, ephemeris, and
other required environmental parameters.

GL-4 305-CD-043-001

instrument

instrument

activity deviation

list
instrument
activity list

instrument
engineering data

instrument
Mi Croprocessor
memory loads

instrument
resource
deviation list

instrument
resource profile

instrument
science data

logical string

long-term
instrument plan
(LTIP)

* A hardware system that collects scientific or operational data.

» Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

* An integrated collection of hardware containing one or more
sensors and associated controls designed to produce data on/in
an observational environment.

An instrument's activity deviations from an existing
instrument activity list, used by the EOC for developing the
detailed activity schedule.

An instrument's list of activities that nominally covers seven
days, used by the EOC for developing the detailed activity
schedule.

Subset of telemetered engineering data required for performing
instrument operations and science processing

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads could
include microprocessor-stored tables, microprocessor-stored
commands, or updates to microprocessor software.

An instrument's anticipated resource deviations from an
existing resource profile, used by the EOC for establishing
TDRSS contact times and building the preliminary resource
schedule.

Anticipated resource needs for an instrument over atarget
week, used by the EOC for establishing TDRSS contact times
and building the preliminary resource schedule.

Data produced by the science sensor(s) of an instrument,
usually constituting the mission of that instrument.

A collection of hardware and software resources, and
information about how those resources are being used within
the EOC, to provide spacecraft and instrument control and
monitoring during rea-time contacts, simulations, and
historical replays.

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated
approximately every six months and covers a period of up to
approximately 5 years.

GL-5 305-CD-043-001

long-term
science plan
(LTSP)

long term
spacecraft
operations plan

mean time
between failure
(MTBF)

mean down time
(MDT)

mean time
between
maintenance
(MTBM)

mean time to
repair (MTTR)

mirrored

connection

mission critical

mode

object

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated approximately
every six months and covers a period of up to approximately
fiveyears.

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from the
Flight Dynamics Facility, spanning a period of several months.

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures
operating time.

Sum of the mean timeto repair MTTR plusthe average logistic
delay times.

The mean time between preventive maintenance (MTBPM) and
mean time between corrective maintenance (MTBCM) of the
ECS equipment. Each will contribute to the calculation of the
MTBM and follow the relationship: ’MTBM = I/MTBPM +
UMTBCM

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design
parameters.

(aka mirrored logical string connection) Type of connection to
a shared service in which the requesting user is provided the
same telemetry ground configuration as the tel emetry processes
running on the Real-Time Server. See also tailored connection.

A term used to describe an activity, function or EOC resource
that provides a service that is necessary for ensuring the well-
being of an EOS spacecraft.

One of five attributes of alogical string that makes it unique.
The mode is an enumerated type which indicates the operator's
intended use of thelogical string (i.e., operational, test, training)

Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are identified
by client via unique reference.

GL-6 305-CD-043-001

operational
database
identifier
orbit data

permanent
process

playback data
preliminary
resource schedule
preplanned

stored command

principal
investigator (PI)

prototype

One of five attributes of alogical string that makes it unique.
The operational database id indicates which database versionis
used in configuration of the softwarein a specific logical string

Data that represent spacecraft locations. Orbit (or ephemeris)
datainclude: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of mass
of the Earth); a corresponding statement about the accuracy of
the position and the corresponding time of the position
(including the time system); some accuracy requirements may
be hundreds of meters while other may be afew centimeters.

(akapersistent process) Software process (task) that is executed
upon host startup and terminated upon host shutdown. See also
transient process.

Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

Aninitial integrated spacecraft schedule, derived from

instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

A command issued to an instrument or subsystem to be
executed at some later time. These commands will be collected
and forwarded during an available uplink prior to execution.

An individual who is contracted to conduct a specific scientific
investigation. (Aninstrument Pl isthe person designated by the
EOS Program as ultimately responsible for the delivery and
performance of standard products derived from an EOS
instrument investigation.).

Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes
may be developed without anticipation of the resulting software
being directly included in a formal release. Prototypes are
developed on afaster time scal e than theincremental and formal
development track.

GL-7 305-CD-043-001

raw data

real-time data

real-time logical
strings

reconfiguration

SCC-stored
commands and
tables

scenario

Datain their original packets, as received from the spacecraft
and instruments, unprocessed by EDOS.

* Level 0 — Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

* Level 1A —Level 0 data, which may have been reformatted
or transformed reversibly, located to a coordinate system, and
packaged with needed ancillary and engineering data.

* Level 1B — Radiometrically corrected and calibrated datain
physical units at full instrument resolution as acquired.

* Level 2 — Retrieved environmental variables (e.g., ocean
wave height, soil moisture, ice concentration) at the same
location and similar resolution as the Level 1 source data.

» Level 3—Dataor retrieved environmental variables that have
been spatially and/or temporally resampled (i.e., derived from
Data that are acquired and transmitted immediately to the
ground (as opposed to playback data). Delay is limited to the
actual time required to transmit the data.

A logica string with a real-time data source. These logical
string are nominally used to operationally monitor real-time
contacts, and require the support of a full complement of
Telemetry, Command and Real-time Contact Management
subsystem processes as well as FUI Ground Script Controller,
DMS Archiver and Parameter Server processes.

A change in operational hardware, software, data bases or
procedures brought about by a change in a system’ s objectives.

Commands and tables which are stored in the memory of the
central onboard computer on the spacecraft. The execution of
these commands or the result of loading these operational tables
occurs sometime following their storage. The term “core-
stored” applies only to the location where the items are stored
on the spacecraft and instruments; core-stored commands or
tables could be associated with the spacecraft or any of the
instruments.

A description of the operation of the system in user's
terminology including adescription of the output response for a
given set of input stimuli. Scenarios are used to define
operations concepts.

GL-8 305-CD-043-001

segment

Sensor

shared service

spacecraft
identifier

spacecraft
engineering data

spacecraft
subsystems
activity list
spacecraft

subsystems
resource profile

state

tailored
connection

One of the three functional subdivisions of the ECS:

CSMS -- Communications and Systems M anagement Segment
FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.). Science
and engineering sensors are distinguished according to the
stimuli to which they respond.

* Sensor name: The name of the satellite sensor which was
used to obtain that data.

(aka shared logical string) A logical string created to provide a
specific service to multiple users. Resources are allocated on a
Real-Time Server and multiple users from different user
workstations are allowed to individually access the shared
service and monitor the same activity.

One of five attributes of alogical string that makes it unique.
The spacecraft id marksalogical string for support of aspecific
mission.

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

A spacecraft subsystem's list of activities that nominally covers
seven days, used by the EOC for developing the detailed
activity schedule.

Anticipated resource needs for a spacecraft subsystem over a
target week, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

one of five attributes of alogical string that makes it unique.
The state is an enumerated type that indicates if alogical string
is actively performing its intended function (active), or if it
exists only to perform its intended function in the event of a
hardware or software failure in the active string (backup)

(akatailored logical string connection) Type of connection to a
shared service in which the requesting user isallowed to modify
the ground configuration of the telemetry processes running on
the local workstation, independent of the telemetry processes
executing on the Real-Time Server. The user may tailor the
ground configuration of the local processing to his own needs.
See also mirrored connection.

GL-9 305-CD-043-001

target of
opportunity
(TOO)

thread

thread, as used in
some Systems
Engineering
documents

toolkits

Transient Process

A TOO is a science event or phenomenon that cannot be fully
predicted in advance, thus requiring timely system response or
high-priority processing.

A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion of a
scenario, or multiple scenarios.

Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
paralel with the ECS.

(aka temporary process) Software process (task) that is
executed by a parent process in order to perform a specific
function. Upon completion of that function, the process is
terminated by the parent process. See also permanent processs.

GL-10 305-CD-043-001

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced

	3. Real-Time Resource Management Subsystem
	3.1 Resource Management Subsystem Context
	3.1-1. Resource Management Subsystem Context Diagr...

	3.2 RMS String Manager Component
	3.2.1 RMS String Manager Component Context
	Figure 3.2.1-1. RMS String Manager Component Conte...

	3.2.2 RMS String Manager Component Interfaces
	3.2.3 RMS String Manager Component Object Model
	Figure 3.2.3-1. RMS String Manager Component Objec...
	Figure 3.2.3-2. RMS String Manager Component FrGrT...
	Figure 3.2.3-3. RMS String Manager Component FrGrC...
	Figure 3.2.3-4. RMS String Manager Component FrGrR...
	Figure 3.2.3-5. RMS String Manager Component FrGrR...
	Figure 3.2.3-6. RMS String Manager Component FrGrM...
	Figure 3.2.3-7. RMS String Manager Component FrGrS...
	Figure 3.2.3-8. RMS String Manager Component FrGrB...
	Figure 3.2.3-9. RMS String Manager Component FrGrS...
	Figure 3.2.3-10. RMS String Manager Component FrGr...
	Figure 3.2.3-11. RMS String Manager Component FrGr...
	Figure 3.2.3-12. RMS String Manager Component FrGr...
	Figure 3.2.3-13. RMS String Manager Component FrGr...
	Figure 3.2.3-14. RMS String Manager Component FrGr...

	3.2.4 RMS String Manager Component Dynamic Model
	Figure 3.2.4.1.4-1. Initialization of RMS Residing...
	Figure 3.2.4.2.4-1. Initialization of RMS Residing...
	Figure 3.2.4.2.4-2. Initialization of RMS Residing...
	Figure 3.2.4.2.4-3. Initialization of RTS RMS - Pa...
	Figure 3.2.4.2.4-4. Initialization of RTS RMS - Co...
	Figure 3.2.4.2.4-5. Initialization of RTS RMS - Re...
	Figure 3.2.4.3.4-1. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-1. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-2. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-3. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-4. Request for a Real-Time Servic...
	Figure 3.2.4.4.4-5. Request for a Real-Time Servic...
	Figure 3.2.4.5.4-1. Execution of String Connection...
	Figure 3.2.4.5.4-2. Creation of Mirrored Telemetry...
	Figure 3.2.4.6.4-1. Execution of String Connection...
	Figure 3.2.4.6.4-2. Creation of Telemetry Subsyste...
	Figure 3.2.4.7.4-1. Request for Command Authority ...
	Figure 3.2.4.8.4-1. Request for Command Authority ...
	Figure 3.2.4.9.4-1. Request for Telemetry Configur...
	Figure 3.2.4.10.4-1. Request for Telemetry Configu...
	Figure 3.2.4.11.4-1 Request for Dedicated Replay T...
	Figure 3.2.4.12.4-1 Request for Dedicated Replay T...
	Figure 3.2.4.13.4-1. Request for a String Failover...
	Figure 3.2.4.14.4-1. Request for String Deactivati...
	Figure 3.2.4.15.4-1. Request for String Activation...
	Figure 3.2.4.15.4-2. Command State Change Event Tr...
	Figure 3.2.4.15.4-3. Telemetry State Change Event ...
	Figure 3.2.4.15.4-4. Real-Time Contact Management ...

	3.2.5 RMS String Manager Component Data Dictionary...

	3.3 RMS Resource Monitor Component
	3.3.1 RMS Resource Monitor Component Context
	Figure 3.3.1-1. RMS Resource Monitor Component Con...

	3.3.2 RMS Resource Monitor Component Interfaces
	Figure 3.3.3-1. RMS Resource Monitor Component Obj...
	Figure 3.3.3-2. RMS Resource Monitor Component FrG...
	Figure 3.3.3-3. RMS Resource Monitor Component FrG...
	Figure 3.3.4.2.4-1. Request for User Station Monit...
	Figure 3.3.4.3.4-1. Request to Switch User Station...
	Figure 3.3.4.4.4-1. Failed Hardware Status from th...

	Abbreviations and Acronyms
	Glossary

